Reputation: 127
When loading data from Cassandra table, a spark partition represents all rows with same partition key. However, when I create data in spark with same partition key and re-partitioning the new RDD using .repartitionByCassandraReplica(..) method, it ends up in a different spark partition? How do I achieve consistent partitions in spark using the partition-scheme defined by the Spark-Cassandra connector?
Links to download CQL and Spark job code that I tested
Version and other information
Code extract. Download code using above links for more details
Step 1 : Loads data into 8 spark partitions
Map<String, String> map = new HashMap<String, String>();
CassandraTableScanJavaRDD<TestTable> tableRdd = javaFunctions(conf)
.cassandraTable("testkeyspace", "testtable", mapRowTo(TestTable.class, map));
Step 2 : Repartition data into 8 partitions
.repartitionByCassandraReplica(
"testkeyspace",
"testtable",
partitionNumPerHost,
someColumns("id"),
mapToRow(TestTable.class, map));
Step 3: Print partition id and values for both rdds
rdd.mapPartitionsWithIndex(...{
@Override
public Iterator<String> call(..) throws Exception {
List<String> list = new ArrayList<String>();
list.add("PartitionId-" + integer);
while (itr.hasNext()) {
TestTable value = itr.next();
list.add(Integer.toString(value.getId()));
}
return list.iterator();
}
}, true).collect();
Step 4 : Snapshot of results printed on Partition 1. Different for both Rdds but expect to be same
Load Rdd values
----------------------------
Table load - PartitionId -1
----------------------------
15
22
--------------------------------------
Repartitioned values - PartitionId -1
--------------------------------------
33
16
Upvotes: 1
Views: 1459
Reputation: 16576
Repartition by Cassandra replica does not deterministically place keys. There is a ticket currently to change that.
https://datastax-oss.atlassian.net/projects/SPARKC/issues/SPARKC-278
A workaround now is to set the Partitionspernode parameter to 1.
Upvotes: 2