Reputation: 91068
I am writing a game in python and have decided to create a DSL for the map data files. I know I could write my own parser with regex, but I am wondering if there are existing python tools which can do this more easily, like re2c which is used in the PHP engine.
Some extra info:
The DSL contains only data (declarative?), it doesn't get "executed". Most lines look like:
SOMETHING: !abc @123 #xyz/123
I just need to read the tree of data.
Upvotes: 8
Views: 9902
Reputation: 273716
DSLs are a good thing, so you don't need to defend yourself :-)
However, have you considered an internal DSL ? These have so many pros versus external (parsed) DSLs that they're at least worth consideration. Mixing a DSL with the power of the native language really solves lots of the problems for you, and Python is not really bad at internal DSLs, with the with
statement handy.
Upvotes: 2
Reputation: 11
What if I can extend python syntax with new operators to introduce new functionally to the language? For example, a new operator <=>
for swapping the value of two variables.
How can I implement such behavior? Here comes AST module. The last module is a handy tool for handling abstract syntax trees. What’s cool about this module is it allows me to write python code that generates a tree and then compiles it to python code.
Let’s say we want to compile a superset language (or python-like language) to python:
from :
a <=> b
to:
a , b = b , a
I need to convert my 'python like' source code into a list of tokens. So I need a tokenizer, a lexical scanner for Python source code. Tokenize module
I may use the same meta-language to define both the grammar of new 'python-like' language and then build the structure of the abstract syntax tree AST
Why use AST?
from tokenize import untokenize, tokenize, NUMBER, STRING, NAME, OP, COMMA
import io
import ast
s = b"a <=> b\n" # i may read it from file
b = io.BytesIO(s)
g = tokenize(b.readline)
result = []
for token_num, token_val, _, _, _ in g:
# naive simple approach to compile a<=>b to a,b = b,a
if token_num == OP and token_val == '<=' and next(g).string == '>':
first = result.pop()
next_token = next(g)
second = (NAME, next_token.string)
result.extend([
first,
(COMMA, ','),
second,
(OP, '='),
second,
(COMMA, ','),
first,
])
else:
result.append((token_num, token_val))
src = untokenize(result).decode('utf-8')
exp = ast.parse(src)
code = compile(exp, filename='', mode='exec')
def my_swap(a, b):
global code
env = {
"a": a,
"b": b
}
exec(code, env)
return env['a'], env['b']
print(my_swap(1,10))
Other modules using AST, whose source code may be a useful reference:
textX-LS: A DSL used to describe a collection of shapes and draw it for us.
pony orm: You can write database queries using Python generators and lambdas with translate to SQL query sting—pony orm use AST under the hood
osso: Role Based Access Control a framework handle permissions.
Upvotes: 1
Reputation: 48198
On the lines of declarative python, I wrote a helper module called 'bpyml' which lets you declare data in python in a more XML structured way without the verbose tags, it can be converted to/from XML too, but is valid python.
https://svn.blender.org/svnroot/bf-blender/trunk/blender/release/scripts/modules/bpyml.py
Example Use http://wiki.blender.org/index.php/User:Ideasman42#Declarative_UI_In_Blender
Upvotes: 1
Reputation:
For "small languages" as the one you are describing, I use a simple split, shlex (mind that the # defines a comment) or regular expressions.
>>> line = 'SOMETHING: !abc @123 #xyz/123'
>>> line.split()
['SOMETHING:', '!abc', '@123', '#xyz/123']
>>> import shlex
>>> list(shlex.shlex(line))
['SOMETHING', ':', '!', 'abc', '@', '123']
The following is an example, as I do not know exactly what you are looking for.
>>> import re
>>> result = re.match(r'([A-Z]*): !([a-z]*) @([0-9]*) #([a-z0-9/]*)', line)
>>> result.groups()
('SOMETHING', 'abc', '123', 'xyz/123')
Upvotes: 2
Reputation:
I have written something like this in work to read in SNMP notification definitions and automatically generate Java classes and SNMP MIB files from this. Using this little DSL, I could write 20 lines of my specification and it would generate roughly 80 lines of Java code and a 100 line MIB file.
To implement this, I actually just used straight Python string handling (split(), slicing etc) to parse the file. I find Pythons string capabilities to be adequate for most of my (simple) parsing needs.
Besides the libraries mentioned by others, if I were writing something more complex and needed proper parsing capabilities, I would probably use ANTLR, which supports Python (and other languages).
Upvotes: 2
Reputation: 9730
Yes, there are many -- too many -- parsing tools, but none in the standard library.
From what what I saw PLY and SPARK are popular. PLY is like yacc, but you do everything in Python because you write your grammar in docstrings.
Personally, I like the concept of parser combinators (taken from functional programming), and I quite like pyparsing: you write your grammar and actions directly in python and it is easy to start with. I ended up producing my own tree node types with actions though, instead of using their default ParserElement
type.
Otherwise, you can also use existing declarative language like YAML.
Upvotes: 5
Reputation: 391992
Here's an approach that works really well.
abc= ONETHING( ... )
xyz= ANOTHERTHING( ... )
pqr= SOMETHING( this=abc, that=123, more=(xyz,123) )
Declarative. Easy-to-parse.
And...
It's actually Python. A few class declarations and the work is done. The DSL is actually class declarations.
What's important is that a DSL merely creates objects. When you define a DSL, first you have to start with an object model. Later, you put some syntax around that object model. You don't start with syntax, you start with the model.
Upvotes: 7
Reputation: 14961
I've always been impressed by pyparsing. The author, Paul McGuire, is active on the python list/comp.lang.python and has always been very helpful with any queries concerning it.
Upvotes: 13