Reputation: 17454
My 1st Question: As per the title.
I am asking this because I came across a StackExchange question: What can multiple threads do that a single thread cannot?
In one of the solutions given in that link states that whatever multithread can do, it can be done by single thread as well.
However I don't think this is true. My argument is this: When we build a simple chat program with socket programming and run it via the command console. If the chat program is single threaded. The chat program is actually half-duplex. Which means we cannot listen and talk concurrently and each time only a party can talk and the other have to listen. In order for both parties to be able to talk and receive message concurrently, we have to implement it with multithreads.
My 2nd Question: Is my argument correct? Or did I miss out some points here, and therefore a single thread still can do everything multithread does?
Upvotes: 1
Views: 1171
Reputation: 4722
Let's consider the computer as a whole, and more precisely that you chat application is bound with the kernel (or the whole os) as a piece we would call "the software".
Now consider that this "software" runs on a single core (say a i386).
Then you can figure out that, even if you wrote your chat application using threads (which is probably quite overkill), the software as a whole runs on a single CPU core, which means that at a very moment it performs one single thing even if there seem to be parallel things happening.
This is nothing more but a Turing machine (using a single tape) https://en.wikipedia.org/wiki/Turing_machine
The parallelism is an illusion caused by the kernel because it can switch between task fast enough. Just like a film seems to be continuous picture on screen, when actually there are just 24 images per seconds, and this is enough to fool our brain.
So I would say that anything a multithreaded program does, a single threaded could do.
Nevertheless, now we all use multi-core CPUs which can be seen at a certain point as running on multiple computers at the same time (parallel computing), thus you can probably find software that works on multi core and that would not run on a single threaded one. A good example are device drivers (in kernel). If you have a poor implementation, on non preemptive kernel, you can create a busy loop that waits for an event indefinitely. This usually deadlock on single core (you prevent the kernel to schedule to another task, thus you prevent the event to be sent). But this can work on multi core as the event is usually eventually sent by the other thread running on an other core (hopefully).
Upvotes: 4
Reputation: 182753
The core reason why this argument is incorrect is subtle. While it's true that with only a single thread, or single core, or single network interface, that particular component can only be handling a send or a receive at any given time, if it's not the critical path, it does not make sense to describe the overall system as half duplex.
Consider a network link that is full-duplex and takes 1ms to move a chunk of data from one end to the other. Now imagine we have a device that puts data on the link or removes data from the link but cannot do both at the same time. So long as it takes much less than 1ms to process a send or a receive, this single file path that data in both directions must go through does not somehow make the link half-duplex. There will still be data moving in both directions at the same time.
In any realistic chat application, the CPU will not be the limiting factor. So it's inability to do more than one thing at a time can't make the system half-duplex. There can still be data moving in both directions at the same time.
For a typical chat application under typical load, the behavior of the system will not be significantly different whether implementation uses a single thread or has multiple threads with infinite CPU resources. The CPU just won't be the limiting factor.
Upvotes: 1
Reputation: 171178
I want to amend the existing answer (+1):
You absolutely can run multiple parallel IOs on a single thread. An IO is nothing more but a kernel data structure. When you start the IO the OS talks to the hardware and tells it to do something. Then, the CPU is free to do whatever it wants. The hardware calls back into the OS when it's done. It issues an interrupt which hijacks a CPU core to process the completion notification.
This is called async IO and all OS'es provide it.
In fact this is how socket programs with many connections run. They use async IO to multiplex high amounts of connections onto a small pool of threads.
Upvotes: 2