Reputation: 1039
I´m trying to replicate in R a cox proportional hazard model estimation from Stata using the following data http://iojournal.org/wp-content/uploads/2015/05/FortnaReplicationData.dta
The command in stata is the following:
stset enddate2009, id(VPFid) fail(warends) origin(time startdate)
stcox HCTrebels o_rebstrength demdum independenceC transformC lnpop lngdppc africa diffreligion warage if keepobs==1, cluster(js_country)
Cox regression -- Breslow method for ties
No. of subjects = 104 Number of obs = 566
No. of failures = 86
Time at risk = 194190
Wald chi2(10) = 56.29
Log pseudolikelihood = -261.94776 Prob > chi2 = 0.0000
(Std. Err. adjusted for 49 clusters in js_countryid)
-------------------------------------------------------------------------------
| Robust
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
HCTrebels | .4089758 .1299916 -2.81 0.005 .2193542 .7625165
o_rebstrength | 1.157554 .2267867 0.75 0.455 .7884508 1.699447
demdum | .5893352 .2353317 -1.32 0.185 .2694405 1.289027
independenceC | .5348951 .1882826 -1.78 0.075 .268316 1.066328
transformC | .5277051 .1509665 -2.23 0.025 .3012164 .9244938
lnpop | .9374204 .0902072 -0.67 0.502 .7762899 1.131996
lngdppc | .9158258 .1727694 -0.47 0.641 .6327538 1.325534
africa | .5707749 .1671118 -1.92 0.055 .3215508 1.013165
diffreligion | 1.537959 .4472004 1.48 0.139 .869834 2.719275
warage | .9632408 .0290124 -1.24 0.214 .9080233 1.021816
-------------------------------------------------------------------------------
With R, I´m using the following:
data <- read.dta("FortnaReplicationData.dta")
data4 <- subset(data, keepobs==1)
data4$end_date <- data4$`_t`
data4$start_date <- data4$`_t0`
levels(data4$o_rebstrength) <- c(0:4)
data4$o_rebstrength <- as.numeric(levels(data4$o_rebstrength[data4$o_rebstrength])
data4 <- data4[,c("start_date", "end_date","HCTrebels", "o_rebstrength", "demdum", "independenceC", "transformC", "lnpop", "lngdppc", "africa", "diffreligion", "warage", "js_countryid", "warends")]
data4 <- na.omit(data4)
surv <- coxph(Surv(start_date, end_date, warends) ~ HCTrebels+ o_rebstrength +demdum + independenceC+ transformC+ lnpop+ lngdppc+ africa +diffreligion+ warage+cluster(js_countryid), data = data4, robust = TRUE, method="breslow")
coef exp(coef) se(coef) robust se z p
HCTrebels -0.8941 0.4090 0.3694 0.3146 -2.84 0.0045
o_rebstrength 0.1463 1.1576 0.2214 0.1939 0.75 0.4505
demdum -0.5288 0.5893 0.4123 0.3952 -1.34 0.1809
independenceC -0.6257 0.5349 0.3328 0.3484 -1.80 0.0725
transformC -0.6392 0.5277 0.3384 0.2831 -2.26 0.0240
lnpop -0.0646 0.9374 0.1185 0.0952 -0.68 0.4974
lngdppc -0.0879 0.9158 0.2060 0.1867 -0.47 0.6377
africa -0.5608 0.5708 0.3024 0.2898 -1.94 0.0530
diffreligion 0.4305 1.5380 0.3345 0.2878 1.50 0.1347
warage -0.0375 0.9632 0.0405 0.0298 -1.26 0.2090
Likelihood ratio test=30.1 on 10 df, p=0.000827
n= 566, number of events= 86
I get the same hazard ratio coefficients but the standard errors does not look the same. The Z and p values are close but not exactly the same. Why might be the difference between the results in R and Stata?
Upvotes: 5
Views: 2012
Reputation: 1039
As user20650 noticed, when including "nohr" in the Stata options you get exactly the same standard errors as in R. Still there was a small difference in the standard errors when using clusters. user20650 again noticed that the difference was given because Stata default standard errors are multiplied g/(g − 1), where g is the number of cluster while R does not adjust these standard errors. So a solution is just to include noadjust in Stata or have the standard errors adjusted in R by doing:
sqrt(diag(vcov(surv))* (49/48))
If still we want in R to have the same standard errors from Stata, as when not specifying nohr, we need to know that when nhr is left off we obtain $exp(\beta)$ with the standard errors resulting from fitting the model in those scale. In particular obtained by applying the delta method to the original standard-error estimate. "The delta method obtains the standard error of a transformed variable by calculating the variance of the corresponding first-order Taylor expansion, which for the transform $exp(\beta)$ amounts to mutiplying the oringal standard error by $exp(\hat{\beta})$. This trick of calculation yields identical rsults as does transforming the parameters prior to estimation and then reestimating" (Cleves et al 2010). In R we can do it by using:
library(msm)
se <-diag(vcov(surv)* (49/48))
sapply(se, function(x) deltamethod(~ exp(x1), coef(surv)[which(se==x)], x))
HCTrebels o_rebstrength demdum independenceC transformC lnpop lngdppc africa diffreligion warage
0.1299916 0.2267867 0.2353317 0.1882826 0.1509665 0.0902072 0.1727694 0.1671118 0.4472004 0.02901243
Upvotes: 4