Reputation: 43
I have a dataframe with type pandas.core.frame.DataFrame like:
open high close low volume amount
date
2015-11-27 8.10 8.16 7.35 7.34 37877648 294274400
2015-11-26 8.03 8.44 8.16 8.00 45933600 378897088
2015-11-25 7.95 8.03 7.99 7.89 21255886 169172176
2015-11-24 7.95 8.18 8.04 7.85 24808112 199120256
2015-11-23 8.24 8.29 7.95 7.93 29176848 236019264
df.index
DatetimeIndex(['2015-11-27', '2015-11-26', '2015-11-25', '2015-11-24',
'2015-11-23', '2015-11-20', '2015-11-19', '2015-11-18',
'2015-11-17', '2015-11-16',
...
'2014-12-12', '2014-12-11', '2014-12-10', '2014-12-09',
'2014-12-08', '2014-12-05', '2014-12-04', '2014-12-03',
'2014-12-02', '2014-12-01'],
dtype='datetime64[ns]', name=u'date', length=193, freq=None)
How to insert df into mongodb with a date.index field in isoDate
format but not datatime64[ns]/timestamps? .
Upvotes: 1
Views: 3025
Reputation: 6176
I've been bothered for a long time, but I finally found a way to do it. It depends on the way we insert mongod. I used to insert mongod in this way:
records = json.loads(DataFrame.T.to_json()).values()
collection.insert_many(records)
We need to understand that this approach will convert DataFrame time into datatime64[ns]/timestamps.
print records[0]
{u'dtime': 1407076151000L,u'olddtime': u'2014/8/3 14:29:11'}
We can see that it saves time as numberlong and DateTime as string.So we need change records:
for row in records:
row['olddtime'] = datetime.datetime.strptime(row['olddtime'], "%Y/%m/%d %H:%M:%S")
Then we print it:
{u'olddtime': datetime.datetime(2014, 8, 3, 14, 29, 11), u'dtime': 1407076151000L}
Finally we do this:
collection.insert_many(records)
That's OK!
Upvotes: 3