Reputation: 247
New to shapeless and I have a question on using polymorphic functions that need some dependencies. I basically have this code and want to pull somePoly object out of the run method:
import shapeless._
object SomeObject {
type SomeType = Int :+: String :+: (String, Int) :+: CNil
def run( someList: List[SomeType], someInt:Int, someWord:String ) = {
object somePoly extends Poly1 {
implicit def doIt = at[Int]( i => i + someInt + someWord.length)
implicit def doIt2 = at[String]( i => i.length + someWord.length)
implicit def doIt3 = at[(String, Int)]( i => i._1.length + someWord.length)
}
someList.map( _.map(somePoly) )
}
}
One way I thought of doing it was like this, but it seems messy:
object TypeContainer {
type SomeType = Int :+: String :+: (String, Int) :+: CNil
}
case class SomePolyWrapper( someList: List[TypeContainer.SomeType], someInt:Int, someWord:String ){
object somePoly extends Poly1 {
implicit def doIt = at[Int]( i => i + someInt + someWord.length)
implicit def doIt2 = at[String]( i => i.length + someWord.length)
implicit def doIt3 = at[(String, Int)]( i => i._1.length + someWord.length)
}
}
object SomeObject {
def run( someList: List[TypeContainer.SomeType], someInt:Int, someWord:String ) = {
val somePolyWrapper = SomePolyWrapper(someList, someInt, someWord)
someList.map( _.map(somePolyWrapper.somePoly) )
}
}
Anyone have any advice?
Upvotes: 6
Views: 279
Reputation: 139058
The limitations of Scala's implicit resolution system mean the Poly
definition needs to be a stable identifier, which makes this kind of thing more painful than it should be. As I mentioned on Gitter, there are a couple of workarounds that I know of (there may be others).
One approach would be to make the Poly1
a PolyN
, where the extra arguments are for the someInt
and someWord
values. If you were mapping over an HList
, you'd then use mapConst
and zip
to make the input HList
have the right shape. I've never done this for a coproduct, but something similar is likely to work.
Another approach is to use a custom type class. In your case that might look something like this:
import shapeless._
trait IntFolder[C <: Coproduct] {
def apply(i: Int, w: String)(c: C): Int
}
object IntFolder {
implicit val cnilIntFolder: IntFolder[CNil] = new IntFolder[CNil] {
def apply(i: Int, w: String)(c: CNil): Int = sys.error("Impossible")
}
def instance[H, T <: Coproduct](f: (H, Int, String) => Int)(implicit
tif: IntFolder[T]
): IntFolder[H :+: T] = new IntFolder[H :+: T] {
def apply(i: Int, w: String)(c: H :+: T): Int = c match {
case Inl(h) => f(h, i, w)
case Inr(t) => tif(i, w)(t)
}
}
implicit def iif[T <: Coproduct: IntFolder]: IntFolder[Int :+: T] =
instance((h, i, w) => h + i + w.length)
implicit def sif[T <: Coproduct: IntFolder]: IntFolder[String :+: T] =
instance((h, i, w) => h.length + i + w.length)
implicit def pif[T <: Coproduct: IntFolder]: IntFolder[(String, Int) :+: T] =
instance((h, i, w) => h._1.length + i + w.length)
}
And then you could write a more generic version of your run
:
def run[C <: Coproduct](
someList: List[C],
someInt: Int,
someWord: String
)(implicit cif: IntFolder[C]): List[Int] = someList.map(cif(someInt, someWord))
And use it like this:
scala> run(List(Coproduct[SomeType](1)), 10, "foo")
res0: List[Int] = List(14)
scala> run(List(Coproduct[SomeType](("bar", 1))), 10, "foo")
res1: List[Int] = List(16)
The specificity of the operation makes this approach look a little weird, but if I really needed to do something like this for different coproducts, this is probably the solution I'd choose.
Upvotes: 4