Reputation: 101
I have a dataset, which consists of 1000 simulations. The output of each simulation is saved as a row of data. There are variables alpha
, beta
and simulationid
.
Here's a sample dataset:
simulationid beta alpha
1 0.025840106 20.59671241
2 0.019850549 18.72183088
3 0.022440886 21.02298228
4 0.018124857 20.38965861
5 0.024134726 22.08678021
6 0.023619479 20.67689981
7 0.016907209 17.69609466
8 0.020036455 24.6443037
9 0.017203175 24.32682682
10 0.020273349 19.1513272
I want to estimate a new value - let's call it new
- which depends on alpha
and beta
as well as different levels of two other variables which we'll call risk
and price
. Values of risk
range from 0 to 100, price
from 0 to 500 in steps of 5.
What I want to achieve is a dataset that consists of values representing the probability that (across the simulations) new
is greater than 0 for combinations of risk
and price
.
I can achieve this using the code below. However, the reshape
process takes more hours than I'd like. And it seems to me to be something that could be completed a lot quicker.
So, my question is either:
i) is there an efficient way to generate multiple datasets from a single row of data without multiple reshape
, or
ii) am I going about this in totally the wrong way?
set maxvar 15000
/* Input sample data */
input simulationid beta alpha
1 0.025840106 20.59671241
2 0.019850549 18.72183088
3 0.022440886 21.02298228
4 0.018124857 20.38965861
5 0.024134726 22.08678021
6 0.023619479 20.67689981
7 0.016907209 17.69609466
8 0.020036455 24.6443037
9 0.017203175 24.32682682
10 0.020273349 19.1513272
end
forvalues risk = 0(1)100 {
forvalues price = 0(5)500 {
gen new_r`risk'_p`price' = `price' * (`risk'/200)* beta - alpha
gen probnew_r`risk'_p`price' = 0
replace probnew_r`risk'_p`price' = 1 if new_r`risk'_p`price' > 0
sum probnew_r`risk'_p`price', mean
gen mnew_r`risk'_p`price' = r(mean)
drop new_r`risk'_p`price' probnew_r`risk'_p`price'
}
}
drop if simulationid > 1
save simresults.dta, replace
forvalues risk = 0(1)100 {
clear
use simresults.dta
reshape long mnew_r`risk'_p, i(simulationid) j(price)
keep simulation price mnew_r`risk'_p
rename mnew_r`risk'_p risk`risk'
save risk`risk'.dta, replace
}
clear
use risk0.dta
forvalues risk = 1(1)100 {
merge m:m price using risk`risk'.dta, nogen
save merged.dta, replace
}
Upvotes: 0
Views: 109
Reputation: 37278
Here's a start on your problem.
So far as I can see, you don't need more than one dataset.
The various reshape
s and merge
s just rearrange what was first generate
d and that can be done within one dataset.
The code here in the first instance is for just one pair of values of alpha
and beta
. To simulate 1000 such, you would need 1000 times more observations, i.e. about 10 million, which is not usually a problem and to loop over the alphas and betas. But the loop can be tacit. We'll get to that.
This code has been run and is legal. It's limited to one alpha
, beta
pair.
clear
input simulationid beta alpha
1 0.025840106 20.59671241
2 0.019850549 18.72183088
3 0.022440886 21.02298228
4 0.018124857 20.38965861
5 0.024134726 22.08678021
6 0.023619479 20.67689981
7 0.016907209 17.69609466
8 0.020036455 24.6443037
9 0.017203175 24.32682682
10 0.020273349 19.1513272
end
local N = 101 * 101
set obs `N'
egen risk = seq(), block(101)
replace risk = risk - 1
egen price = seq(), from(0) to(100)
replace price = 5 * price
gen result = (price * (risk/200)* beta[1] - alpha[1]) > 0
bysort price risk: gen mean = sum(result)
by price risk: replace mean = mean[_N]/_N
Assuming now that you first read in 1000 values, here is a sketch of how to get the whole thing. This code has not been tested. That is, your dataset starts with 1000 observations; you then enlarge it to 10 million or so, and get your results. The tricksy part is using an expression for the subscript to ensure that each block of results is for a distinct alpha, beta
pair. That's not compulsory; you could do it in a loop, but then you would need to generate
outside the loop and replace
within it.
local N = 101 * 101 * 1000
set obs `N'
egen risk = seq(), block(101)
replace risk = risk - 1
egen price = seq(), from(0) to(100)
replace price = 5 * price
egen sim = seq(), block(10201)
gen result = (price * (risk/200)* beta[ceil(_n/10201)] - alpha[ceil(_n/10201)]) > 0
bysort sim price risk: gen mean = sum(result)
by sim price risk: replace mean = mean[_N]/_N
Other devices used: egen
to set up in blocks; getting the mean without repeated calls to summarize
; using a true-or-false expression directly.
NB: I haven't tried to understand what you are doing, but it seems to me that the price-risk-simulation conditions define single values, so calculating a mean looks redundant. But perhaps that is in the code because you wish to add further detail to the code once you have it working.
NB2: This seems a purely deterministic calculation. Not sure that you need this code at all.
Upvotes: 0