Peter Graham
Peter Graham

Reputation: 11701

How to round a number to significant figures in Python

I need to round a float to be displayed in a UI. e.g, to one significant figure:

1234 -> 1000

0.12 -> 0.1

0.012 -> 0.01

0.062 -> 0.06

6253 -> 6000

1999 -> 2000

Is there a nice way to do this using the Python library, or do I have to write it myself?

Upvotes: 221

Views: 413909

Answers (29)

Falken
Falken

Reputation: 1069

f'{float(f"{i:.1g}"):g}'
# Or with Python <3.6,
'{:g}'.format(float('{:.1g}'.format(i)))

This solution:

  1. exactly answers the question
  2. does not need any extra package
  3. does not need any user-defined auxiliary function or mathematical operation

For an arbitrary number n of significant figures, you can use:

print('{:g}'.format(float('{:.{p}g}'.format(i, p=n))))

Test:

a = [1234, 0.12, 0.012, 0.062, 6253, 1999, -3.14, 0., -48.01, 0.75]
b = ['{:g}'.format(float('{:.1g}'.format(i))) for i in a]
# b == ['1000', '0.1', '0.01', '0.06', '6000', '2000', '-3', '0', '-50', '0.8']

Note: with this solution, it is not possible to adapt the number of significant figures dynamically from the input because there is no standard way to distinguish numbers with different numbers of trailing zeros (3.14 == 3.1400). If you need to do so, then non-standard functions like the ones provided in the to-precision package are needed.

Upvotes: 94

LetzerWille
LetzerWille

Reputation: 5668

import math

def sig_dig(x, n_sig_dig):
  num_of_digits = len(str(x).replace(".", ""))
  if n_sig_dig >= num_of_digits:
      return x
  n = math.floor(math.log10(x) + 1 - n_sig_dig)
  result = round(10 ** -n * x) * 10 ** n
  return float(str(result)[: n_sig_dig + 1])

    
>>> sig_dig(1234243, 3)
>>> sig_dig(243.3576, 5)

    1230.0
    243.36

Upvotes: -1

zephyr
zephyr

Reputation: 215

This suits my aesthetic a little better, though many of the above are comparable

import numpy as np
    
number=-456.789
significantFigures=4

roundingFactor=significantFigures - int(np.floor(np.log10(np.abs(number)))) - 1
rounded=np.round(number, roundingFactor)

string=rounded.astype(str)

print(string)

This works for individual numbers and numpy arrays, and should function fine for negative numbers.

There's one additional step we might add - np.round() returns a decimal number even if rounded is an integer (i.e. for significantFigures=2 we might expect to get back -460 but instead we get -460.0). We can add this step to correct for that:

if roundingFactor<=0:
    rounded=rounded.astype(int)

Unfortunately, this final step won't work for an array of numbers - I'll leave that to you dear reader to figure out if you need.

Upvotes: 0

HappyElf
HappyElf

Reputation: 21

scientific notation for significant figures has been included as a function in numpy version 1.21.0. as of 18.08.2024:

import numpy as np

# define the required number of significant figures
sig_fig = 2

# compensate for that the precision is always one magnitude
# higher than the number of significant figures:

num_to_sig_fig_str = np.format_float_scientific( 
    123.456789, precision = sig_fig - 1 
    )

num_to_sig_fig_str
> '1.2e+02'

# to convert back to a number using the same precision  
# as the number of significant figures, use float():

float(num_to_sig_fig_str)
> 120.0

documentation: https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html

Upvotes: 2

Built-in round rounds x to a chosen decimal place. If we want to round to significant figures instead, we need to know the position of the first significant figure. log10 of abs(x) rounded down will give us the position of the first significant figure: math.floor(math.log10(abs(x))).

So a function to round x to 1 significant figure is the following:

import math

def round_1sig(x):
    if x == 0: return x
    return round(x, -math.floor(math.log10(abs(x))))

And more generally, a function to round x to nsig significant figures is the following:

def round_nsig(x, nsig):
    if x == 0: return x
    return round(x, -math.floor(math.log10(abs(x))) + nsig - 1)

Upvotes: 0

Jagerber48
Jagerber48

Reputation: 1005

I've written a PyPi package called sciform which can easily perform this kind of rounding and supports other scientific formatting options.

from sciform import Formatter

sform = Formatter(
    round_mode="sig_fig",  # This is the default
    ndigits=1,
)

num_list = [
    1234,
    0.12,
    0.012,
    0.062,
    6253,
    1999,
]

for num in num_list:
    result = sform(num)
    print(f'{num} -> {result}')

# 1234 -> 1000
# 0.12 -> 0.1
# 0.012 -> 0.01
# 0.062 -> 0.06
# 6253 -> 6000
# 1999 -> 2000

sciform was in part motivated by the fact that the python built in format specification mini-language does not always provide the exact round-to-sig-figs while also always using fixed-point desired behavior. The g option can kind of get sig figs right. If you want sig figs to work below the decimal point (that is 0.1 becomes 0.10 to 2 significant digits) you have to use the # option, but the # option means a trailing decimal point will not be removed so that 120 -> 1.e+02 to one significant digit.

See especially this comment in a discussion on Python discourse.

num_list = [
    1234,
    0.12,
    0.012,
    0.062,
    6253,
    1999,
]

for num in num_list:
    print(f'{num} -> {num:#.1g}')

# 1234 -> 1e+03
# 0.12 -> 0.1
# 0.012 -> 0.01
# 0.062 -> 0.06
# 6253 -> 6.e+03
# 1999 -> 2.e+03

Upvotes: 1

Tim McNamara
Tim McNamara

Reputation: 18385

I can't think of anything that would be able to handle this out of the box. But it's fairly well handled for floating point numbers.

>>> round(1.2322, 2)
1.23

Integers are trickier. They're not stored as base 10 in memory, so significant places isn't a natural thing to do. It's fairly trivial to implement once they're a string though.

Or for integers:

def intround(n, sigfigs):
    n = str(n)
    return n[:sigfigs] + ('0' * (len(n)-sigfigs))
>>> intround(1234, 1)
'1000'
>>> intround(1234, 2)
'1200'

If you would like to create a function that handles any number, my preference would be to convert them both to strings and look for a decimal place to decide what to do:

def roundall1(n, sigfigs):
    n = str(n)
    try:
        sigfigs = n.index('.')
    except ValueError:
        pass
    return intround(n, sigfigs)

Another option is to check for type. This will be far less flexible, and will probably not play nicely with other numbers such as Decimal objects:

def roundall2(n, sigfigs):
    if type(n) is int:
        return intround(n, sigfigs)
    else:
        return round(n, sigfigs)

Upvotes: 3

Morteza
Morteza

Reputation: 11

in very cases, the number of significant is depend on to the evaluated process, e.g. error. I wrote the some codes which returns a number according to it's error (or with some desired digits) and also in string form (which doesn't eliminate right side significant zeros)

import numpy as np

def Sig_Digit(x, *N,):
    if abs(x) < 1.0e-15:
        return(1)
    N = 1 if N ==() else N[0]
    k = int(round(abs(N)-1))-int(np.floor(np.log10(abs(x))))
    return(k);

def Sig_Format(x, *Error,):
    if abs(x) < 1.0e-15:
        return('{}')
    Error = 1 if Error ==() else abs(Error[0])
    k = int(np.floor(np.log10(abs(x))))
    z = x/10**k
    k = -Sig_Digit(Error, 1)
    m = 10**k
    y = round(x*m)/m
    if k < 0:
        k = abs(k)
        if z >= 9.5:
            FMT = '{:'+'{}'.format(1+k)+'.'+'{}'.format(k-1)+'f}'
        else:
            FMT = '{:'+'{}'.format(2+k)+'.'+'{}'.format(k)+'f}'
    elif k == 0:
        if z >= 9.5:
            FMT = '{:'+'{}'.format(1+k)+'.0e}'
        else:
            FMT = '{:'+'{}'.format(2+k)+'.0f}'
    else:
        FMT = '{:'+'{}'.format(2+k)+'.'+'{}'.format(k)+'e}'
    return(FMT)

def Sci_Format(x, *N):
    if abs(x) < 1.0e-15:
        return('{}')
    N = 1 if N ==() else N[0]
    N = int(round(abs(N)-1))
    y = abs(x)
    k = int(np.floor(np.log10(y)))
    z = x/10**k
    k = k-N
    m = 10**k
    y = round(x/m)*m
    if k < 0:
        k = abs(k)
        if z >= 9.5:
            FMT = '{:'+'{}'.format(1+k)+'.'+'{}'.format(k-1)+'f}'
        else:
            FMT = '{:'+'{}'.format(2+k)+'.'+'{}'.format(k)+'f}'
    elif k == 0:
        if z >= 9.5:
            FMT = '{:'+'{}'.format(1+k)+'.0e}'
        else:
            FMT = '{:'+'{}'.format(2+k)+'.0f}'
    else:
        FMT = '{:'+'{}'.format(2+N)+'.'+'{}'.format(N)+'e}'
    return(FMT)

def Significant(x, *Error):
    N = 0 if Error ==() else Sig_Digit(abs(Error[0]), 1)
    m = 10**N
    y = round(x*m)/m
    return(y)

def Scientific(x, *N):
    m = 10**Sig_Digit(x, *N)
    y = round(x*m)/m
    return(y)

def Scientific_Str(x, *N,): 
    FMT = Sci_Format(x, *N)
    return(FMT.format(x))

def Significant_Str(x, *Error,):    
    FMT = Sig_Format(x, *Error)
    return(FMT.format(x))

test code:

X = [19.03345607, 12.075, 360.108321344, 4325.007605343]
Error = [1.245, 0.1245, 0.0563, 0.01245, 0.001563, 0.0004603]
for x in X:
    for error in Error:
        print(x,'+/-',error, end='   \t==> ')
        print(' (',Significant_Str(x, error), '+/-', Scientific_Str(error),')')

  

print out:

19.03345607 +/- 1.245       ==>  ( 19 +/-  1 )

19.03345607 +/- 0.1245      ==>  ( 19.0 +/- 0.1 )

19.03345607 +/- 0.0563      ==>  ( 19.03 +/- 0.06 )

19.03345607 +/- 0.01245     ==>  ( 19.03 +/- 0.01 )

19.03345607 +/- 0.001563    ==>  ( 19.033 +/- 0.002 )

19.03345607 +/- 0.0004603       ==>  ( 19.0335 +/- 0.0005 )

12.075 +/- 1.245    ==>  ( 12 +/-  1 )

12.075 +/- 0.1245       ==>  ( 12.1 +/- 0.1 )

12.075 +/- 0.0563       ==>  ( 12.07 +/- 0.06 )

12.075 +/- 0.01245      ==>  ( 12.07 +/- 0.01 )

12.075 +/- 0.001563     ==>  ( 12.075 +/- 0.002 )

12.075 +/- 0.0004603    ==>  ( 12.0750 +/- 0.0005 )

360.108321344 +/- 1.245     ==>  ( 360 +/-  1 )

360.108321344 +/- 0.1245    ==>  ( 360.1 +/- 0.1 )

360.108321344 +/- 0.0563    ==>  ( 360.11 +/- 0.06 )

360.108321344 +/- 0.01245       ==>  ( 360.11 +/- 0.01 )

360.108321344 +/- 0.001563      ==>  ( 360.108 +/- 0.002 )

360.108321344 +/- 0.0004603     ==>  ( 360.1083 +/- 0.0005 )

4325.007605343 +/- 1.245    ==>  ( 4325 +/-  1 )

4325.007605343 +/- 0.1245       ==>  ( 4325.0 +/- 0.1 )

4325.007605343 +/- 0.0563       ==>  ( 4325.01 +/- 0.06 )

4325.007605343 +/- 0.01245      ==>  ( 4325.01 +/- 0.01 )

4325.007605343 +/- 0.001563     ==>  ( 4325.008 +/- 0.002 )

4325.007605343 +/- 0.0004603    ==>  ( 4325.0076 +/- 0.0005 )

Upvotes: 0

chadn
chadn

Reputation: 379

Easier to know an answer works for your needs when it includes examples. The following is built on previous solutions, but offers a more general function which can round to 1, 2, 3, 4, or any number of significant digits.

import math

# Given x as float or decimal, returns as string a number rounded to "sig" significant digts
# Return as string in order to control significant digits, could be a float or decimal 
def round_sig(x, sig=2):
  r = round(x, sig-int(math.floor(math.log10(abs(x))))-1)
  floatsig = "%." + str(sig) + "g"
  return "%d"%r if abs(r) >= 10**(sig-1) else '%s'%float(floatsig % r) 

>>> a = [1234, 123.4, 12.34, 1.234, 0.1234, 0.01234, 0.25, 1999, -3.14, -48.01, 0.75]
>>> [print(i, "->", round_sig(i,1), round_sig(i), round_sig(i,3), round_sig(i,4)) for i in a]

1234 -> 1000 1200 1230 1234
123.4 -> 100 120 123 123.4
12.34 -> 10 12 12.3 12.34
1.234 -> 1 1.2 1.23 1.234
0.1234 -> 0.1 0.12 0.123 0.1234
0.01234 -> 0.01 0.012 0.0123 0.01234
0.25 -> 0.2 0.25 0.25 0.25
1999 -> 2000 2000 2000 1999
-3.14 -> -3 -3.1 -3.14 -3.14
-48.01 -> -50 -48 -48.0 -48.01
0.75 -> 0.8 0.75 0.75 0.75

Upvotes: 0

MYK
MYK

Reputation: 3027

I adapted one of the answers. I like this:

def sigfiground(number:float, ndigits=3)->float:
    return float(f"{number:.{ndigits}g}")

I use it when I still want a float (I do formatting elsewhere).

Upvotes: 3

Ayan De
Ayan De

Reputation: 1

This function takes both positive and negative numbers and does the proper significant digit rounding.

from math import floor

def significant_arithmetic_rounding(n, d):
    '''
    This function takes a floating point number and the no. of significant digit d, perform significant digits
    arithmetic rounding and returns the floating point number after rounding
    '''
    if n == 0:
        return 0
    else:
        # Checking whether the no. is negative or positive. If it is negative we will take the absolute value of it and proceed
        neg_flag = 0
        if n < 0:
            neg_flag = 1
            n = abs(n)
        
        n1 = n   
        # Counting the no. of digits to the left of the decimal point in the no.
        ld = 0
        while(n1 >= 1):
            n1 /= 10
            ld += 1
        
        n1 = n
        # Counting the no. of zeros to the right of the decimal point and before the first significant digit in the no.
        z = 0
        if ld == 0:
            while(n1 <= 0.1):
                n1 *= 10
                z += 1
        
        n1 = n
        # No. of digits to be considered after decimal for rounding
        rd = (d - ld) + z
        n1 *= 10**rd
    
        # Increase by 0.5 and take the floor value for rounding
        n1 = floor(n1+0.5)
        # Placing the decimal point at proper position
        n1 /= 10 ** rd
        # If the original number is negative then make it negative
        if neg_flag == 1:
            n1 = 0 - n1

        return n1

Testing:

>>> significant_arithmetic_rounding(1234, 3)
1230.0
>>> significant_arithmetic_rounding(123.4, 3)
123.0
>>> significant_arithmetic_rounding(0.0012345, 3)
0.00123
>>> significant_arithmetic_rounding(-0.12345, 3)
-0.123
>>> significant_arithmetic_rounding(-30.15345, 3)
-30.2

Upvotes: 0

Igor Mikushkin
Igor Mikushkin

Reputation: 1317

A simple variant using the standard decimal library

from decimal import Decimal

def to_significant_figures(v: float, n_figures: int) -> str:
    d = Decimal(v)
    d = d.quantize(Decimal((0, (), d.adjusted() - n_figures + 1)))
    return str(d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize())

Testing it

>>> to_significant_figures(1.234567, 3)
'1.23'
>>> to_significant_figures(1234567, 3)
'1230000'
>>> to_significant_figures(1.23, 7)
'1.23'
>>> to_significant_figures(123, 7)
'123'

Upvotes: 0

Josh Duran
Josh Duran

Reputation: 51

Most of these answers involve the math, decimal and/or numpy imports or output values as strings. Here is a simple solution in base python that handles both large and small numbers and outputs a float:

def sig_fig_round(number, digits=3):
    power = "{:e}".format(number).split('e')[1]
    return round(number, -(int(power) - digits))

Upvotes: 1

HyperActive
HyperActive

Reputation: 1328

The sigfig package/library covers this. After installing you can do the following:

>>> from sigfig import round
>>> round(1234, 1)
1000
>>> round(0.12, 1)
0.1
>>> round(0.012, 1)
0.01
>>> round(0.062, 1)
0.06
>>> round(6253, 1)
6000
>>> round(1999, 1)
2000

Upvotes: 5

Autumn
Autumn

Reputation: 3766

The posted answer was the best available when given, but it has a number of limitations and does not produce technically correct significant figures.

numpy.format_float_positional supports the desired behaviour directly. The following fragment returns the float x formatted to 4 significant figures, with scientific notation suppressed.

import numpy as np
x=12345.6
np.format_float_positional(x, precision=4, unique=False, fractional=False, trim='k')
> 12340.

Upvotes: 8

ryan281
ryan281

Reputation: 76

I modified indgar's solution to handle negative numbers and small numbers (including zero).

from math import log10, floor
def round_sig(x, sig=6, small_value=1.0e-9):
    return round(x, sig - int(floor(log10(max(abs(x), abs(small_value))))) - 1)

Upvotes: 4

Sam Mason
Sam Mason

Reputation: 16213

To directly answer the question, here's my version using naming from the R function:

import math

def signif(x, digits=6):
    if x == 0 or not math.isfinite(x):
        return x
    digits -= math.ceil(math.log10(abs(x)))
    return round(x, digits)

My main reason for posting this answer are the comments complaining that "0.075" rounds to 0.07 rather than 0.08. This is due, as pointed out by "Novice C", to a combination of floating point arithmetic having both finite precision and a base-2 representation. The nearest number to 0.075 that can actually be represented is slightly smaller, hence rounding comes out differently than you might naively expect.

Also note that this applies to any use of non-decimal floating point arithmetic, e.g. C and Java both have the same issue.

To show in more detail, we ask Python to format the number in "hex" format:

0.075.hex()

which gives us: 0x1.3333333333333p-4. The reason for doing this is that the normal decimal representation often involves rounding and hence is not how the computer actually "sees" the number. If you're not used to this format, a couple of useful references are the Python docs and the C standard.

To show how these numbers work a bit, we can get back to our starting point by doing:

0x13333333333333 / 16**13 * 2**-4

which should should print out 0.075. 16**13 is because there are 13 hexadecimal digits after the decimal point, and 2**-4 is because hex exponents are base-2.

Now we have some idea of how floats are represented we can use the decimal module to give us some more precision, showing us what's going on:

from decimal import Decimal

Decimal(0x13333333333333) / 16**13 / 2**4

giving: 0.07499999999999999722444243844 and hopefully explaining why round(0.075, 2) evaluates to 0.07

Upvotes: 16

Gnubie
Gnubie

Reputation: 2607

This returns a string, so that results without fractional parts, and small values which would otherwise appear in E notation are shown correctly:

def sigfig(x, num_sigfig):
    num_decplace = num_sigfig - int(math.floor(math.log10(abs(x)))) - 1
    return '%.*f' % (num_decplace, round(x, num_decplace))

Upvotes: 0

Don Mclachlan
Don Mclachlan

Reputation: 449

https://stackoverflow.com/users/1391441/gabriel, does the following address your concern about rnd(.075, 1)? Caveat: returns value as a float

def round_to_n(x, n):
    fmt = '{:1.' + str(n) + 'e}'    # gives 1.n figures
    p = fmt.format(x).split('e')    # get mantissa and exponent
                                    # round "extra" figure off mantissa
    p[0] = str(round(float(p[0]) * 10**(n-1)) / 10**(n-1))
    return float(p[0] + 'e' + p[1]) # convert str to float

>>> round_to_n(750, 2)
750.0
>>> round_to_n(750, 1)
800.0
>>> round_to_n(.0750, 2)
0.075
>>> round_to_n(.0750, 1)
0.08
>>> math.pi
3.141592653589793
>>> round_to_n(math.pi, 7)
3.141593

Upvotes: 0

William Rusnack
William Rusnack

Reputation: 948

I have created the package to-precision that does what you want. It allows you to give your numbers more or less significant figures.

It also outputs standard, scientific, and engineering notation with a specified number of significant figures.

In the accepted answer there is the line

>>> round_to_1(1234243)
1000000.0

That actually specifies 8 sig figs. For the number 1234243 my library only displays one significant figure:

>>> from to_precision import to_precision
>>> to_precision(1234243, 1, 'std')
'1000000'
>>> to_precision(1234243, 1, 'sci')
'1e6'
>>> to_precision(1234243, 1, 'eng')
'1e6'

It will also round the last significant figure and can automatically choose what notation to use if a notation isn't specified:

>>> to_precision(599, 2)
'600'
>>> to_precision(1164, 2)
'1.2e3'

Upvotes: 13

Ettore Galli
Ettore Galli

Reputation: 751

This function does a normal round if the number is bigger than 10**(-decimal_positions), otherwise adds more decimal until the number of meaningful decimal positions is reached:

def smart_round(x, decimal_positions):
    dp = - int(math.log10(abs(x))) if x != 0.0 else int(0)
    return round(float(x), decimal_positions + dp if dp > 0 else decimal_positions)

Hope it helps.

Upvotes: 0

getting_sleepy
getting_sleepy

Reputation: 31

If you want to round without involving strings, the link I found buried in the comments above:

http://code.activestate.com/lists/python-tutor/70739/

strikes me as best. Then when you print with any string formatting descriptors, you get a reasonable output, and you can use the numeric representation for other calculation purposes.

The code at the link is a three liner: def, doc, and return. It has a bug: you need to check for exploding logarithms. That is easy. Compare the input to sys.float_info.min. The complete solution is:

import sys,math

def tidy(x, n):
"""Return 'x' rounded to 'n' significant digits."""
y=abs(x)
if y <= sys.float_info.min: return 0.0
return round( x, int( n-math.ceil(math.log10(y)) ) )

It works for any scalar numeric value, and n can be a float if you need to shift the response for some reason. You can actually push the limit to:

sys.float_info.min*sys.float_info.epsilon

without provoking an error, if for some reason you are working with miniscule values.

Upvotes: 3

eddygeek
eddygeek

Reputation: 4510

Using python 2.6+ new-style formatting (as %-style is deprecated):

>>> "{0}".format(float("{0:.1g}".format(1216)))
'1000.0'
>>> "{0}".format(float("{0:.1g}".format(0.00356)))
'0.004'

In python 2.7+ you can omit the leading 0s.

Upvotes: 1

drew.ray
drew.ray

Reputation: 21

I ran into this as well but I needed control over the rounding type. Thus, I wrote a quick function (see code below) that can take value, rounding type, and desired significant digits into account.

import decimal
from math import log10, floor

def myrounding(value , roundstyle='ROUND_HALF_UP',sig = 3):
    roundstyles = [ 'ROUND_05UP','ROUND_DOWN','ROUND_HALF_DOWN','ROUND_HALF_UP','ROUND_CEILING','ROUND_FLOOR','ROUND_HALF_EVEN','ROUND_UP']

    power =  -1 * floor(log10(abs(value)))
    value = '{0:f}'.format(value) #format value to string to prevent float conversion issues
    divided = Decimal(value) * (Decimal('10.0')**power) 
    roundto = Decimal('10.0')**(-sig+1)
    if roundstyle not in roundstyles:
        print('roundstyle must be in list:', roundstyles) ## Could thrown an exception here if you want.
    return_val = decimal.Decimal(divided).quantize(roundto,rounding=roundstyle)*(decimal.Decimal(10.0)**-power)
    nozero = ('{0:f}'.format(return_val)).rstrip('0').rstrip('.') # strips out trailing 0 and .
    return decimal.Decimal(nozero)


for x in list(map(float, '-1.234 1.2345 0.03 -90.25 90.34543 9123.3 111'.split())):
    print (x, 'rounded UP: ',myrounding(x,'ROUND_UP',3))
    print (x, 'rounded normal: ',myrounding(x,sig=3))

Upvotes: 0

indgar
indgar

Reputation: 749

If you want to have other than 1 significant decimal (otherwise the same as Evgeny):

>>> from math import log10, floor
>>> def round_sig(x, sig=2):
...   return round(x, sig-int(floor(log10(abs(x))))-1)
... 
>>> round_sig(0.0232)
0.023
>>> round_sig(0.0232, 1)
0.02
>>> round_sig(1234243, 3)
1230000.0

Upvotes: 74

AJP
AJP

Reputation: 28563

def round_to_n(x, n):
    if not x: return 0
    power = -int(math.floor(math.log10(abs(x)))) + (n - 1)
    factor = (10 ** power)
    return round(x * factor) / factor

round_to_n(0.075, 1)      # 0.08
round_to_n(0, 1)          # 0
round_to_n(-1e15 - 1, 16) # 1000000000000001.0

Hopefully taking the best of all the answers above (minus being able to put it as a one line lambda ;) ). Haven't explored yet, feel free to edit this answer:

round_to_n(1e15 + 1, 11)  # 999999999999999.9

Upvotes: 5

Evgeny
Evgeny

Reputation: 3274

You can use negative numbers to round integers:

>>> round(1234, -3)
1000.0

Thus if you need only most significant digit:

>>> from math import log10, floor
>>> def round_to_1(x):
...   return round(x, -int(floor(log10(abs(x)))))
... 
>>> round_to_1(0.0232)
0.02
>>> round_to_1(1234243)
1000000.0
>>> round_to_1(13)
10.0
>>> round_to_1(4)
4.0
>>> round_to_1(19)
20.0

You'll probably have to take care of turning float to integer if it's bigger than 1.

Upvotes: 210

Cris Stringfellow
Cris Stringfellow

Reputation: 3808

To round an integer to 1 significant figure the basic idea is to convert it to a floating point with 1 digit before the point and round that, then convert it back to its original integer size.

To do this we need to know the largest power of 10 less than the integer. We can use floor of the log 10 function for this.

from math import log10, floor
def round_int(i,places):
    if i == 0:
        return 0
    isign = i/abs(i)
    i = abs(i)
    if i < 1:
        return 0
    max10exp = floor(log10(i))
    if max10exp+1 < places:
        return i
    sig10pow = 10**(max10exp-places+1)
    floated = i*1.0/sig10pow
    defloated = round(floated)*sig10pow
    return int(defloated*isign)

Upvotes: 5

Peter Graham
Peter Graham

Reputation: 11701

%g in string formatting will format a float rounded to some number of significant figures. It will sometimes use 'e' scientific notation, so convert the rounded string back to a float then through %s string formatting.

>>> '%s' % float('%.1g' % 1234)
'1000'
>>> '%s' % float('%.1g' % 0.12)
'0.1'
>>> '%s' % float('%.1g' % 0.012)
'0.01'
>>> '%s' % float('%.1g' % 0.062)
'0.06'
>>> '%s' % float('%.1g' % 6253)
'6000.0'
>>> '%s' % float('%.1g' % 1999)
'2000.0'

Upvotes: 137

Related Questions