Reputation: 225
Why does predict with biglm differ from predict with lm?
Here is my code to generate data: (admittedly sloppy)
require(data.table)
require(biganalytics)
#create a data set with factor variables and one continuous numerical variable
LETTERS702 <- c(LETTERS, sapply(LETTERS, function(x) paste0(x, LETTERS)))
data = data.table(ded = runif(100), cont = runif(100), fac1 = as.factor(LETTERS702[1:10]))
data[, cont := as.factor(ifelse(cont < .25, 100,
ifelse(cont < .5, 200,
ifelse( cont < .75, 300,
cont))))]
newdata = data.table(ded = runif(50), cont = runif(50), fac1 = as.factor(LETTERS702[7:12]))
newdata[, cont := as.factor(ifelse(cont < .25, 100,
ifelse(cont < .5, 200,
ifelse( cont < .75, 300,
cont))))]
#add the levels from the old data to the new data
levels(newdata$fac1) = c(levels(newdata$fac1),levels(data$fac1))
levels(newdata$cont) = c(levels(newdata$cont),levels(data$cont))
levels(data$fac1) = c(levels(data$fac1),levels(newdata$fac1))
levels(data$cont) = c(levels(data$cont),levels(newdata$cont))
Now when I run an lm regression and try to create predicted values in the new data table, it works as expected:
reg =lm(ded ~ fac1 + cont, data = data)
summary(reg)
newdata[fac1 %in% data$fac1 & cont %in% data$cont, ded_hat := predict(reg, newdata[fac1 %in% data$fac1 & cont %in% data$cont, ])]
head(newdata)
ded cont fac1 ded_hat
1: 0.1820960 200 G 0.4636306
2: 0.2561465 300 H 0.5412485
3: 0.8711127 300 I 0.5351451
4: 0.9839877 200 J 0.5737994
5: 0.8802973 200 K NA
6: 0.1385486 200 L NA
But when I try to use biglm
, All of the new predicted values are NA:
reg = biglm(ded ~ fac1 + cont, data = data)
summary(reg)
newdata[fac1 %in% data$fac1 & cont %in% data$cont, ded_hat := predict(reg, newdata[fac1 %in% data$fac1 & cont %in% data$cont, ])]
head(newdata)
ded cont fac1 ded_hat
1: 0.1820960 200 G NA
2: 0.2561465 300 H NA
3: 0.8711127 300 I NA
4: 0.9839877 200 J NA
5: 0.8802973 200 K NA
6: 0.1385486 200 L NA
What is going on here? What do I need to change to get predict to work for biglm?
Upvotes: 1
Views: 769
Reputation: 225
Here is the work around I ended up using:
Run the regression and make the prediction
require(data.table)
require(dummies)
#create a data set with factor variables and one continuous numerical variable
LETTERS702 <- c(LETTERS, sapply(LETTERS, function(x) paste0(x, LETTERS)))
data = data.table(ded = runif(100), cont = runif(100), fac1 = as.factor(LETTERS702[1:10]))
data[, cont := as.factor(ifelse(cont < .25, 100,
ifelse(cont < .5, 200,
ifelse( cont < .75, 300,
cont))))]
newdata = data.table(ded = runif(50), cont = runif(50), fac1 = as.factor(LETTERS702[7:12]))
newdata[, cont := as.factor(ifelse(cont < .25, 100,
ifelse(cont < .5, 200,
ifelse( cont < .75, 300,
cont))))]
#add the levels from the old data to the new data
levels(newdata$fac1) = c(levels(newdata$fac1),levels(data$fac1))
levels(newdata$cont) = c(levels(newdata$cont),levels(data$cont))
#generate a dummy for each fac1
data = as.data.table(dummy.data.frame(data, names = c("fac1","cont")))
newdata = as.data.table(dummy.data.frame(newdata, names = c("fac1","cont"), drop = F))
#a list of variable names in both data sets
datanames = (names(data))
newdatanames = (names(newdata))
varnames = subset(newdatanames, newdatanames %in% datanames)
#regression
reg = lm(ded ~ ., data = data)
#prediction
newdata[, ded_hat := predict(reg, newdata)]
Upvotes: 1
Reputation: 226712
It looks like biglm
doesn't automatically drop unused levels, or adjust for different sets of factor levels in a sophisticated way.
If you do
reg1 = lm(ded ~ fac1 + cont, data = data)
reg2 = biglm(ded ~ fac1 + cont, data = data)
and compare the coefficients, you'll see that the non-NA
values match but there are 14 extra NA
values ... which are presumably propagating through the prediction computation.
length(coef(reg1))
## [1] 36
length(coef(reg2))
## [1] 50
## unname() and c() remove extraneous attributes
all.equal(unname(coef(reg1)),unname(c(na.omit(coef(reg2))))) ## TRUE
If you use droplevels
reg3 = biglm(ded ~ fac1 + cont, data = droplevels(data))
then the coefficients match, but the prediction fails differently (Error in x %*% coef(object) : non-conformable arguments
), presumably because there is a different set of levels in the new data - you'll have to work a little harder to set the factor levels so they match ...
Upvotes: 1