Reputation: 4895
I am implementing an approximate counting algorithm where we:
Maintain a counter X using log (log n) bits
Initialize X to 0
When an item arrives, increase X by 1 with probability (½)X
When the stream is over, output 2X − 1 so that E[2X]= n + 1
My implementation is as follows:
import System.Random
type Prob = Double
type Tosses = Int
-- * for sake of simplicity we assume 0 <= p <= 1
tos :: Prob -> StdGen -> (Bool,StdGen)
tos p s = (q <= 100*p, s')
where (q,s') = randomR (1,100) s
toses :: Prob -> Tosses -> StdGen -> [(Bool,StdGen)]
toses _ 0 _ = []
toses p n s = let t@(b,s') = tos p s in t : toses p (pred n) s'
toses' :: Prob -> Tosses -> StdGen -> [Bool]
toses' p n = fmap fst . toses p n
morris :: StdGen -> [a] -> Int
morris s xs = go s xs 0 where
go _ [] n = n
go s (_:xs) n = go s' xs n' where
(h,s') = tos (0.5^n) s
n' = if h then succ n else n
main :: IO Int
main = do
s <- newStdGen
return $ morris s [1..10000]
The problem is that my X is always incorrect for any |stream| > 2
, and it seems like for all StdGen
and |stream| > 1000
, X = 7
I tested the same algorithm in Matlab and it works there, so I assume it's either
an issue with my random number generator, or
raising 1/2 to a large n in Double
Please suggest a path forward?
Upvotes: 5
Views: 144
Reputation: 120741
The problem is actually very simple: with randomR (1,100)
you preclude values within the first percent, so you have a complete cutoff at high powers of 1/2 (which all lie in that small interval). Actually a general thing: ranges should start at zero, not at one†, unless there's a specific reason.
But why even use a range of 100 in the first place? I'd just make it
tos :: Prob -> StdGen -> (Bool,StdGen)
tos p s = (q <= p, s')
where (q,s') = randomR (0,1) s
†I know, Matlab gets this wrong all over the place. Just one of the many horrible things about that language.
Unrelated to your problem: as chi remarked this kind of code looks a lot nicer if you use a suitable random monad, instead of manually passing around StdGen
s.
import Data.Random
import Data.Random.Source.Std
type Prob = Double
tos :: Prob -> RVar Bool
tos p = do
q <- uniform 0 1
return $ q <= p
morris :: [a] -> RVar Int
morris xs = go xs 0 where
go [] n = return n
go (_:xs) n = do
h <- tos (0.5^n)
go xs $ if h then succ n else n
morrisTest :: Int -> IO Int
morrisTest n = do
runRVar (morris [1..n]) StdRandom
Upvotes: 5