Reputation: 135
I made a genetic algorithm with a goal to get an "organism's" y position above 20. The problem is in the part under the class:
import random as r
class Organism(object):
def __init__(self, genes,ID):
self.genes = genes
self.position = [0,0]
self.thisTime=str()
self.geneTranslation = []
self.ID=ID
def move(self,d):
if d == "f" or d == "forward":
self.position[1] += 1
elif d == "b" or d == "back":
self.position[1] -= 1
elif d == "r" or d == "right":
self.position[0] += 1
elif d == "l" or d == "left":
self.position[0] -= 1
print(self.position)
def isInContactWith(self,point):
point = list(point)
if self.position == point:
return True
else:
return False
def run(self):
for i in range(0,4):
if i == 0:
self.geneTranslation.extend(["f"] * self.genes[0])
elif i == 1:
self.geneTranslation.extend(["b"] * self.genes[1])
elif i == 2:
self.geneTranslation.extend(["r"] * self.genes[2])
elif i == 3:
self.geneTranslation.extend(["l"] * self.genes[3])
r.shuffle(self.geneTranslation)
for x in range(1,20):
try:
self.thisTime = r.choice(self.geneTranslation)
self.move(self.thisTime)
except:
pass
population = []
yValues={}
running = True
BestOrganism=Organism([25,25,25,25],0)
for count in range(50):
for x in range(100):
a = lambda: r.randint(-3, 3)
b = BestOrganism.genes[:]
anOrganism = Organism(b[:],x)
for count in range(len(anOrganism.genes[:])):
anOrganism.genes[count] += int(a())
population.append(anOrganism)
for j in range(len(population)):
print("Organism " + str(population[j].ID) + str(population[j].genes))
population[j].run()
yValues[population[j].ID]=population[j].position[1]
if population[j].position[1]>=20:
print(population[j].genes)
running = False
break
BestOrganism=max(yValues)
for k in range(len(population[:])):
if population[k].ID==BestOrganism:
BestOrganism=population[k]
print(yValues[max(yValues)])
print(BestOrganism.genes[:])
population=[]
yValues={}
As you can see, the genes determine the probability for the organism to go in a certain direction. The genes that produce lower y values are weeded out, and the new generation is made from the BestOrganism mutated a little. It seems that this should produce more organisms which have genes with a higher percent chance of going forward, but it doesn't. Is there any other factor which I'm not taking into account?
Upvotes: 0
Views: 223
Reputation: 3579
The main issue is just that you are misusing max
: you're finding the organism with the largest key (ID) instead of the largest Y value. Try max(yValues, key=yValues.get)
.
You could also try increasing the number of move
steps from 20
to something much larger.
Finally, cleaning up the code a bit will help make things clearer.
Upvotes: 2