Reputation: 46381
When doing:
import pandas
x = pandas.read_csv('data.csv', parse_dates=True, index_col='DateTime',
names=['DateTime', 'X'], header=None, sep=';')
with this data.csv
file:
1449054136.83;15.31
1449054137.43;16.19
1449054138.04;19.22
1449054138.65;15.12
1449054139.25;13.12
(the 1st colum is a UNIX timestamp, i.e. seconds elapsed since 1/1/1970), I get this error when resampling the data every 15 second with x.resample('15S')
:
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex
It's like the "datetime" information has not been parsed:
X
DateTime
1.449054e+09 15.31
1.449054e+09 16.19
...
How to import a .CSV with date stored as timestamp with pandas module?
Then once I will be able to import the CSV, how to access to the lines for which date > 2015-12-02 12:02:18 ?
Upvotes: 47
Views: 109968
Reputation: 7984
A slickened one-line version of @EdChum's solution worked for my dataset:
x = pd.read_csv('data.csv',
parse_dates=True,
date_parser=pd.to_datetime,
index_col='DateTime',
names=['DateTime', 'X'],
header=None,
sep=';')
Upvotes: 1
Reputation: 71
The simplest way to do this:
df = pd.read_csv(f, parse_dates=['datecolumn', 'datecolumn1'], infer_datetime_format=True)
Upvotes: 7
Reputation: 817
My solution was similar to Mike's:
import pandas
import datetime
def dateparse (time_in_secs):
return datetime.datetime.fromtimestamp(float(time_in_secs))
x = pandas.read_csv('data.csv',delimiter=';', parse_dates=True,date_parser=dateparse, index_col='DateTime', names=['DateTime', 'X'], header=None)
out = x.truncate(before=datetime.datetime(2015,12,2,12,2,18))
Upvotes: 33
Reputation: 393903
Use to_datetime
and pass unit='s'
to parse the units as unix timestamps, this will be much faster:
In [7]:
pd.to_datetime(df.index, unit='s')
Out[7]:
DatetimeIndex(['2015-12-02 11:02:16.830000', '2015-12-02 11:02:17.430000',
'2015-12-02 11:02:18.040000', '2015-12-02 11:02:18.650000',
'2015-12-02 11:02:19.250000'],
dtype='datetime64[ns]', name=0, freq=None)
Timings:
In [9]:
import time
%%timeit
import time
def date_parser(string_list):
return [time.ctime(float(x)) for x in string_list]
df = pd.read_csv(io.StringIO(t), parse_dates=[0], sep=';',
date_parser=date_parser,
index_col='DateTime',
names=['DateTime', 'X'], header=None)
100 loops, best of 3: 4.07 ms per loop
and
In [12]:
%%timeit
t="""1449054136.83;15.31
1449054137.43;16.19
1449054138.04;19.22
1449054138.65;15.12
1449054139.25;13.12"""
df = pd.read_csv(io.StringIO(t), header=None, sep=';', index_col=[0])
df.index = pd.to_datetime(df.index, unit='s')
100 loops, best of 3: 1.69 ms per loop
So using to_datetime
is over 2x faster on this small dataset, I expect this to scale much better than the other methods
Upvotes: 43
Reputation: 85432
You can parse the date yourself:
import time
import pandas as pd
def date_parser(string_list):
return [time.ctime(float(x)) for x in string_list]
df = pd.read_csv('data.csv', parse_dates=[0], sep=';',
date_parser=date_parser,
index_col='DateTime',
names=['DateTime', 'X'], header=None)
The result:
>>> df
X
DateTime
2015-12-02 12:02:16 15.31
2015-12-02 12:02:17 16.19
2015-12-02 12:02:18 19.22
2015-12-02 12:02:18 15.12
2015-12-02 12:02:19 13.12
Upvotes: 5