Reputation: 3781
I need to convert many columns that are numeric to factor type. An example table:
df <- data.frame(A=1:10, B=2:11, C=3:12)
I tried with apply:
cols<-c('A', 'B')
df[,cols]<-apply(df[,cols], 2, function(x){ as.factor(x)});
But the result is a character class.
> class(df$A)
[1] "character"
How can I do this without doing as.factor for each column?
Upvotes: 8
Views: 13172
Reputation: 388862
Here are couple of tidyverse
options -
library(dplyr)
cols <- c('A', 'B')
df <- df %>% mutate(across(all_of(cols), factor))
str(df)
#'data.frame': 10 obs. of 3 variables:
# $ A: Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10
# $ B: Factor w/ 10 levels "2","3","4","5",..: 1 2 3 4 5 6 7 8 9 10
# $ C: int 3 4 5 6 7 8 9 10 11 12
Using map
-
df[cols] <- purrr::map(df[cols], factor)
Upvotes: 1
Reputation: 481
A simple but effective option would be mapply
df <- data.frame(A=1:10, B=2:11, C=3:12)
cols <- c('A', 'B')
df[,cols] <- as.data.frame(mapply(as.factor,df[,cols]))
You can also use for-loop to achieve the same result:
for(col in cols){
df[,col] <- as.factor(df[,col])
}
Upvotes: 1
Reputation: 41
Updated Nov 9, 2017
purrr / purrrlyr are still in development
Similar to Ben's, but using purrrlyr::dmap_at
:
library(purrrlyr)
df <- data.frame(A=1:10, B=2:11, C=3:12)
# selected cols to factor
cols <- c('A', 'B')
(dmap_at(df, factor, .at = cols))
A B C
<fctr> <fctr> <int>
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8
7 8 9
8 9 10
9 10 11
10 11 12
Upvotes: 4
Reputation: 42283
Another option, with purrr
and dplyr
, perhaps a little more readable than the base solutions, and keeps the data in a dataframe:
Here's the data:
df <- data.frame(A=1:10, B=2:11, C=3:12)
str(df)
'data.frame': 10 obs. of 3 variables:
$ A: int 1 2 3 4 5 6 7 8 9 10
$ B: int 2 3 4 5 6 7 8 9 10 11
$ C: int 3 4 5 6 7 8 9 10 11 12
We can easily operate on all columns with dmap
:
library(purrr)
library(dplyr)
# all cols to factor
dmap(df, as.factor)
Source: local data frame [10 x 3]
A B C
(fctr) (fctr) (fctr)
1 1 2 3
2 2 3 4
3 3 4 5
4 4 5 6
5 5 6 7
6 6 7 8
7 7 8 9
8 8 9 10
9 9 10 11
10 10 11 12
And similarly use dmap
on a subset of columns using select
from dplyr
:
# selected cols to factor
cols <- c('A', 'B')
df[,cols] <-
df %>%
select(one_of(cols)) %>%
dmap(as.factor)
To get the desired result:
str(df)
'data.frame': 10 obs. of 3 variables:
$ A: Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10
$ B: Factor w/ 10 levels "2","3","4","5",..: 1 2 3 4 5 6 7 8 9 10
$ C: int 3 4 5 6 7 8 9 10 11 12
Upvotes: 2
Reputation: 3627
You can place your results back into a data frame which will recognize the factors:
df[,cols]<-data.frame(apply(df[,cols], 2, function(x){ as.factor(x)}))
Upvotes: 3
Reputation: 226087
Try
df[,cols] <- lapply(df[,cols],as.factor)
The problem is that apply()
tries to bind the results into a matrix, which results in coercing the columns to character:
class(apply(df[,cols], 2, as.factor)) ## matrix
class(as.factor(df[,1])) ## factor
In contrast, lapply()
operates on elements of lists.
Upvotes: 14