Reputation: 1319
I have three dictionaries (or more):
A = {'a':1,'b':2,'c':3,'d':4,'e':5}
B = {'b':1,'c':2,'d':3,'e':4,'f':5}
C = {'c':1,'d':2,'e':3,'f':4,'g':5}
How can I get a dictionary of the average values of every key in the three dictionaries?
For example, given the above dictionaries, the output would be:
{'a':1/1, 'b':(2+1)/2, 'c':(3+2+1)/3, 'd':(4+3+2)/3, 'e':(5+4+3)/3, 'f':(5+4)/2, 'g':5/1}
Upvotes: 11
Views: 8391
Reputation: 1345
Here's a very general way to do so (i.e. you can easily change to any aggregation function).:
def aggregate_dicts(dicts, operation=lambda x: sum(x) / len(x)):
"""
Aggregate a sequence of dictionaries to a single dictionary using `operation`. `Operation` should
reduce a list of all values with the same key. Keyrs that are not found in one dictionary will
be mapped to `None`, `operation` can then chose how to deal with those.
"""
all_keys = set().union(*[el.keys() for el in dicts])
return {k: operation([dic.get(k, None) for dic in dicts]) for k in all_keys}
example:
dicts_diff_keys = [{'x': 0, 'y': 1}, {'x': 1, 'y': 2}, {'x': 2, 'y': 3, 'c': 4}]
def mean_no_none(l):
l_no_none = [el for el in l if el is not None]
return sum(l_no_none) / len(l_no_none)
aggregate_dicts(dicts_diff_keys, operation= mean_no_none)
#{'x': 1.0, 'c': 4.0, 'y': 2.0}
Upvotes: 0
Reputation: 1545
You can use Pandas, like this:
import pandas as pd
df = pd.DataFrame([A,B,C])
answer = dict(df.mean())
print(answer)
Upvotes: 17
Reputation: 1557
I use Counter to solve this problem. Please try the following code :)
from collections import Counter
A = {'a':1,'b':2,'c':3,'d':4,'e':5}
B = {'b':1,'c':2,'d':3,'e':4,'f':5}
C = {'c':1,'d':2,'e':3,'f':4,'g':5}
sums = Counter()
counters = Counter()
for itemset in [A, B, C]:
sums.update(itemset)
counters.update(itemset.keys())
ret = {x: float(sums[x])/counters[x] for x in sums.keys()}
print ret
Upvotes: 8
Reputation: 734
If you are working in python 2.7 or 3.5 you can use the following:
keys = set(A.keys()+B.keys()+C.keys())
D = {key:(A.get(key,0)+B.get(key,0)+C.get(key,0))/float((key in A)+(key in B)+(key in C)) for key in keys}
which outputs
D
{'a': 1.0, 'c': 2.0, 'b': 1.5, 'e': 4.0, 'd': 3.0, 'g': 5.0, 'f': 4.5}
if you don't want to use any packages. This doesn't work in python 2.6 and below though.
Upvotes: 0
Reputation: 69346
The easiest way would be to use collections.Counter
as explained here, like this:
from collections import Counter
sums = dict(Counter(A) + Counter(B) + Counter(C))
# Which is {'a': 1, 'c': 6, 'b': 3, 'e': 12, 'd': 9, 'g': 5, 'f': 9}
means = {k: sums[k] / float((k in A) + (k in B) + (k in C)) for k in sums}
The result would be:
>>> means
{'a': 1.0, 'b': 1.5, 'c': 2.0, 'd': 3.0, 'e': 4.0, 'f': 4.5, 'g': 5.0}
Upvotes: 3