Reputation: 3353
Background
We have recently started a "Big Data" project where we want to track what users are doing with our product - how often they are logging in, which features they are clicking on, etc - your basic user analytics stuff. We still don't know exactly what questions we will be asking, but most of it will be "how often did X occur over the last Y months?" type of thing, so we started storing the data sooner rather than later thinking we can always migrate, re-shape etc when we need to but if we don't store it it is gone forever.
We are now looking at what sorts of questions we can ask. In a typical RDBMS, this stage would consist of slicing and dicing the data in many different dimensions, exporting to Excel, producing graphs, looking for trends etc - it seems that for Cassandra, this is rather difficult to do.
Currently we are using Apache Spark, and submitting Spark SQL jobs to slice and dice the data. This actually works really well, and we are getting the data we need, but it is rather cumbersome as there doesn't seem to be any native API for Spark that we can connect to from our workstations, so we are stuck using the spark-submit script and a Spark app that wraps some SQL from the command line and outputs to a file which we then have to read.
The question
In a table (or Column Family) with ~30 columns running on 3 nodes with RF 2, how bad would it be to add an INDEX to every non-PK column, so that we could simply query it using CQL across any column? Would there be a horrendous impact on the performance of writes? Would there be a large increase in disk space usage?
The other option I have been investigating is using Triggers, so that for each row inserted, we populated another handful of tables (essentially, custom secondary index tables) - is this a more acceptable approach? Does anyone have any experience of the performance impact of Triggers?
Upvotes: 0
Views: 417
Reputation: 71
Impact of adding more indexes: This really depends on your data structure, distribution and how you access it; you were right before when you compared this process to RDMS. For Cassandra, it's best to define your queries first and then build the data model.
These guys have a nice write-up on the performance impacts of secondary indexes: https://pantheon.io/blog/cassandra-scale-problem-secondary-indexes
The main impact (from the post) is that secondary indexes are local to each node, so to satisfy a query by indexed value, each node has to query its own records to build the final result set (as opposed to a primary key query where it is known exactly which node needs to be quired). So there's not just an impact on writes, but on read performance as well.
In terms of working out the performance on your data model, I'd recommend using the cassandra-stress tool; you can combine it with a data modeler tool that Datastax have built, to quickly generate profile yamls: http://www.datastax.com/dev/blog/data-modeler
For example, I ran the basic stress profile without and then with secondary indexes on the default table, and the "with indexes" batch of writes took a little over 40% longer to complete. There was also an increase in GC operations / duration etc.
Upvotes: 1