Reputation: 309
I'm trying to put together a function that creates a subset from my original data frame, and then uses dplyr's SELECT and MUTATE to give me the number of large/small entries, based on the sum of the width and length of sepals/petals.
filter <- function (spp, LENGTH, WIDTH) {
d <- subset (iris, subset=iris$Species == spp) # This part seems to work just fine
large <- d %>%
select (LENGTH, WIDTH) %>% # This is where the problem arises.
mutate (sum = LENGTH + WIDTH)
big_samples <- which(large$sum > 4)
return (length(big_samples))
}
Basically, I want the function to return the number of large flowers. However, when I run the function I get the following error -
filter("virginica", "Sepal.Length", "Sepal.Width")
Error: All select() inputs must resolve to integer column positions.
The following do not:
* LENGTH
* WIDTH
What am I doing wrong?
Upvotes: 17
Views: 12680
Reputation: 28411
If quosure and quasiquotation are too much for you, use either .data[[ ]]
or rlang
{{ }}
(curly curly) instead. See Hadley Wickham's 5min video on tidy evaluation and (maybe) Tidy evaluation section in Hadley's Advanced R book for more information.
library(rlang)
library(dplyr)
filter_data <- function(df, spp, LENGTH, WIDTH) {
res <- df %>%
filter(Species == spp) %>%
select(.data[[LENGTH]], .data[[WIDTH]]) %>%
mutate(sum = .data[[LENGTH]] + .data[[WIDTH]]) %>%
filter(sum > 4) %>%
nrow()
return(res)
}
filter_data(iris, "virginica", "Sepal.Length", "Sepal.Width")
#> [1] 50
filter_rlang <- function(df, spp, LENGTH, WIDTH) {
res <- df %>%
filter(Species == spp) %>%
select({{LENGTH}}, {{WIDTH}}) %>%
mutate(sum = {{LENGTH}} + {{WIDTH}}) %>%
filter(sum > 4) %>%
nrow()
return(res)
}
filter_rlang(iris, "virginica", Sepal.Length, Sepal.Width)
#> [1] 50
Created on 2019-11-10 by the reprex package (v0.3.0)
Upvotes: 5
Reputation: 24945
You are running into NSE/SE problems, see the vignette for more info.
Briefly, dplyr
uses a non standard evaluation (NSE) of names, and passing names of columns into functions breaks it, without using the standard evaluation (SE) version.
The SE versions of the dplyr
functions end in _. You can see that select_
works nicely with your original arguments.
However, things get more complicated when using functions. We can use lazyeval::interp
to convert most function arguments into column names, see the conversion of the mutate
to mutate_
call in your function below and more generally, the help: ?lazyeval::interp
Try:
filter <- function (spp, LENGTH, WIDTH) {
d <- subset (iris, subset=iris$Species == spp)
large <- d %>%
select_(LENGTH, WIDTH) %>%
mutate_(sum = lazyeval::interp(~X + Y, X = as.name(LENGTH), Y = as.name(WIDTH)))
big_samples <- which(large$sum > 4)
return (length(big_samples))
}
Upvotes: 22
Reputation: 3200
UPDATE: As of dplyr 0.7.0 you can use tidy eval to accomplish this.
See http://dplyr.tidyverse.org/articles/programming.html for more details.
filter_big <- function(spp, LENGTH, WIDTH) {
LENGTH <- enquo(LENGTH) # Create quosure
WIDTH <- enquo(WIDTH) # Create quosure
iris %>%
filter(Species == spp) %>%
select(!!LENGTH, !!WIDTH) %>% # Use !! to unquote the quosure
mutate(sum = (!!LENGTH) + (!!WIDTH)) %>% # Use !! to unquote the quosure
filter(sum > 4) %>%
nrow()
}
filter_big("virginica", Sepal.Length, Sepal.Width)
> filter_big("virginica", Sepal.Length, Sepal.Width)
[1] 50
Upvotes: 13