Reputation: 2075
This is a simplification of a different problem I have, but it stands well on its own. The idea is to implement functional primitives similar to map
and apply
in Scheme.
Just to recap: in Scheme, given a function f
then (apply f '(1 2 3))
is equivalent to (f 1 2 3)
and (map f '(1 2 3))
is equivalent to ((f 1) (f 2) (f 3))
.
Implementing apply
is the easy one, and there are plenty of other questions showing how this is done:
template <class Func, class... Args, std::size_t... Ixs>
auto apply_helper(Func&& func, const tuple<Args...>& args,
index_sequence<Ixs...>)
-> decltype(func(get<Ixs>(args)...))
{
return forward<Func>(func)(get<Ixs>(forward<const tuple<Args...>&>(args))...);
}
template <class Func, class... Args,
class Ixs = make_index_sequence<sizeof...(Args)>>
auto apply(Func&& func, const tuple<Args...>& args)
-> decltype(apply_helper(func, args, Ixs()))
{
return apply_helper(forward<Func>(func),
forward<const tuple<Args...>&>(args), Ixs());
}
void print3(int x, const char* s, float f) {
cout << x << "," << s << "," << f << endl;
}
int main() {
auto args = make_tuple(2, "Hello", 3.5);
apply(print3, args);
}
Now comes implementing map
, which is a little more tricky. We want something like this to work, so this is the goal (here using mapcar
to avoid conflict with std::map
):
template <class Type>
bool print1(Type&& obj) {
cout << obj;
return true;
}
int main() {
auto args = make_tuple(2, "Hello", 3.5);
mapcar(print1, args);
}
Other alternatives for passing the print1
function are OK as well.
So, if we hard-code the function, the following code will work fine:
template <class... Args, std::size_t... Ixs>
auto mapcar_helper(const tuple<Args...>& args,
index_sequence<Ixs...>)
-> decltype(make_tuple(print1(get<Ixs>(args))...))
{
return make_tuple(print1(get<Ixs>(forward<const tuple<Args...>&>(args)))...);
}
template <class... Args,
class Ixs = make_index_sequence<sizeof...(Args)>>
auto mapcar(const tuple<Args...>& args)
-> decltype(mapcar_helper(args, Ixs()))
{
return mapcar_helper(forward<const tuple<Args...>&>(args), Ixs());
}
The question is how we can generalize this code to accept an arbitrary name as input and have it resolve the name lookup inside the template? Just adding a template parameter does not work since it cannot resolve the function overload at that point.
We would like to make the call to mapcar
above equivalent to the code:
make_tuple(print1(2), print1("Hello"), print1(3.5));
Update: One of the original challenges was to make it work with a C++11 compiler, partially because I am using GCC 4.8, but also because I want to investigate how to do it. Based on the comments, below is an example of how it can be done without the help of polymorphic lambdas (which require C++ 14 compiler support).
It is not as straightforward as I would like, C++ 14 features will make it so much easier, but at least it can be supported at a minor inconvenience to the user.
template <class Func, class... Args, std::size_t... Ixs>
auto mapcar_helper(Func&& func, const tuple<Args...>& args,
index_sequence<Ixs...>)
-> decltype(make_tuple(func(get<Ixs>(args))...))
{
return make_tuple(func(get<Ixs>(args))...);
}
template <class Func, class... Args,
class Ixs = make_index_sequence<sizeof...(Args)>>
auto mapcar(Func&& func, const tuple<Args...>& args)
-> decltype(mapcar_helper(func, args, Ixs())
{
return mapcar_helper(forward<Func>(func), forward<decltype(args)>(args), Ixs());
}
To be able to pass a template "function", we need wrap it in an object:
struct print1 {
template <class Type> const Type& operator()(Type&& obj) {
std::cout << obj << " ";
return obj;
}
};
This can now be passed to the function and the type lookup will be done at the point of the parameter pack expansion:
mapcar(print1(), make_tuple(2, "Hello", 3.5));
Upvotes: 3
Views: 335
Reputation: 14390
template <typename F, class... Args, std::size_t... Ixs>
auto mapcar_helper(F f, const tuple<Args...>& args,
index_sequence<Ixs...>)
-> decltype(make_tuple(f(get<Ixs>(args))...))
{
return make_tuple(f(get<Ixs>(args))...);
}
template <typename F, class... Args,
class Ixs = make_index_sequence<sizeof...(Args)>>
auto mapcar(F f, const tuple<Args...>& args)
-> decltype(mapcar_helper(move(f), args, Ixs()))
{
return mapcar_helper(move(f), args, Ixs());
}
Then you do:
mapcar([](auto&& obj) { return print1(std::forward<decltype(obj)>(obj)); }, args);
Maybe I didn't understand the question. You need to wrap print1
in a lambda because it is ambiguous otherwise; which instantiation of print1
did you want to pass it?
If you don't have macrophobia, you can make this more elegant using a macro:
#define LIFT(F) ([&](auto&&... args) -> decltype(auto) { \
return F(::std::forward<decltype(args)>(args)...); \
})
Then you can use mapcar(LIFT(print1), args)
.
This is how I would write my own map
function:
template<typename F, class Tuple, std::size_t... Is>
auto map(Tuple&& tuple, F f, std::index_sequence<Is...>)
{
using std::get;
return std::tuple<decltype(f(get<Is>(std::forward<Tuple>(tuple))))...>{
f(get<Is>(std::forward<Tuple>(tuple)))...
};
}
template<typename F, class Tuple>
auto map(Tuple&& tuple, F f)
{
using tuple_type = std::remove_reference_t<Tuple>;
std::make_index_sequence<std::tuple_size<tuple_type>::value> seq;
return (map)(std::forward<Tuple>(tuple), std::move(f), seq);
}
Upvotes: 3
Reputation: 69892
what did I miss?
#include <iostream>
#include <string>
template<class F, class...Args>
void map(F&& f, Args&&...args)
{
using expander = int[];
(void) expander { 0, ((void) f(args), 0)... };
}
auto main() -> int
{
using namespace std;
map([](const auto& x) { cout << x << endl; }, 1, "hello"s, 4.3);
return 0;
}
expected output:
1
hello
4.3
Note that in c++17, the map()
function becomes a more pleasing:
template<class F, class...Args>
void map(F&& f, Args&&...args)
{
(f(args), ...);
}
If your next question is "why the brackets?". The answer is because fold expressions are only evaluated in the context of an expression. f(arg1), f(arg2);
is a statement.
reference: http://en.cppreference.com/w/cpp/language/fold
Upvotes: 3