Reputation: 873
I'm binning data and plotting it on a map with a legend for each bin, but I get a line in my legend for each time I go through the loop. How can I just get one line in my legend for each binned category?
NOTE: I have separate for loops to ensure that the smaller circles plot on top of the bigger circles.
sigcorrs = np.random.rand(100,1)
m = Basemap(llcrnrlon=35.,llcrnrlat=30.,urcrnrlon=-160.,urcrnrlat=63.,projection='lcc',resolution='c',lat_1=20.,lat_2=40.,lon_0=90.,lat_0=50.)
m.drawcountries()
m.drawmapboundary(fill_color='lightblue')
m.drawparallels(np.arange(0.,90.,5.),color='gray',dashes=[1,3],labels=[1,0,0,0])
m.drawmeridians(np.arange(0.,360.,15.),color='gray',dashes=[1,3],labels=[0,0,0,1])
m.fillcontinents(color='beige',lake_color='lightblue',zorder=0)
plt.title('Mean Absolute Error')
for a in range(len(clat)):
if sigcorrs[a] > 0.8:
X,Y = m(clon[a],clat[a])
m.scatter(X,Y,s=300,label='Corr > 0.8')
else:
continue
for a in range(len(clat)):
if sigcorrs[a] > 0.6 and sigcorrs[a] <= 0.8:
X,Y = m(clon[a],clat[a])
m.scatter(X,Y,s=200,label='Corr > 0.6')
else:
continue
for a in range(len(clat)):
if sigcorrs[a] > 0.4 and sigcorrs[a] <= 0.6:
X,Y = m(clon[a],clat[a])
m.scatter(X,Y,s=100,label='Corr > 0.4')
else:
continue
for a in range(len(clat)):
if sigcorrs[a] <= 0.4:
X,Y = m(clon[a],clat[a])
m.scatter(X,Y,s=50,label='Corr < 0.4')
else:
continue
plt.legend()
plt.show()
Upvotes: 5
Views: 8188
Reputation: 311
Another method is to plot data without labels inside for loop and plot one instance of the last indexed data with labels again outside for loop. For example:
The wrong way:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
example_y1 = np.random.rand(100,1) * 1.2
example_y2 = np.random.rand(100,1)
x = range(len(example_y1))
for i in range(len(example1)):
if example_y1[i] > example_y2[i]:
plt.scatter(x[i],example_y1[i,0], c = 'blue', label='example1')
plt.scatter(x[i],example_y1[i,0], c = 'green', label='example2')
plt.ylabel('Y')
plt.xlabel('X')
plt.legend(loc='upper left')
plt.show()
The right way:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
example_y1 = np.random.rand(100,1) * 1.2
example_y2 = np.random.rand(100,1)
x = range(len(example_y1))
for i in range(len(example1)):
if example_y1[i] > example_y2[i]:
plt.scatter(x[i],example_y1[i,0], c = 'blue')
plt.scatter(x[i],example_y1[i,0], c = 'green')
n = i # last index
plt.scatter(x[n],example_y1[n,0], c = 'blue', label='example1')
plt.scatter(x[n],example_y1[n,0], c = 'green', label='example2')
plt.ylabel('Y')
plt.xlabel('X')
plt.legend(loc='upper left')
plt.show()
Upvotes: 0
Reputation: 1813
You can avoid this by setting only one label per category. For example in the first loop:
label_added =False
for a in range(len(clat)):
if sigcorrs[a] > 0.8:
X,Y = m(clon[a],clat[a])
if not label_added:
m.scatter(X,Y,s=300,label='Corr > 0.8')
label_added = True
else:
m.scatter(X,Y,s=300)
else:
continue
Upvotes: 7