Reputation: 1272
def description(list:Array[String]): Array[String] = {
for (y <- list) yield modulelookup.lookup(take(4)) + " " + brandlookup.lookup(y.drop(4)).toString()
}
val printRDD = outputRDD.collect().map(x=> (description(x._1),x._2))
is my current code. I would like to do this without collect. modulelookup and brandlookup are RDDs. How to do this?
Upvotes: 0
Views: 89
Reputation: 330303
If modulelookup
and brandlookup
are relatively small you can convert these to broadcast variables and use for mapping as follows:
val modulelookupBD = sc.broadcast(modulelookup.collectAsMap)
val brandlookupBD = sc.broadcast(brandlookup.collectAsMap)
def description(list:Array[String]): Array[String] = list.map(x => {
val module = modulelookupBD.value.getOrElse(x.take(4), "")
val brand = brandlookupBD.value.getOrElse(x.drop(4), "")
s"$module $brand"
})
val printRDD = outputRDD.map{case (xs, y) => (description(xs), y)}
If not there is no efficient way of handling this. You can try to flatMap
, join
and groupByKey
but for any large dataset this combination can be prohibitively expensive.
val indexed = outputRDD.zipWithUniqueId
val flattened = indexed.flatMap{case ((xs, _), id) => xs.map(x => (x, id))}
val withModuleAndBrand = flattened
.map(xid => (xid._1.take(4), xid))
.join(modulelookup)
.values
.map{case ((x, id), module) => (x.drop(4), (id, module))}
.join(brandlookup)
.values
.map{case ((id, module), brand) => (id, s"$module $brand")}
.groupByKey
val final = withModuleAndBrand.join(
indexed.map{case ((_, y), id) => (id, y)}
).values
Replacing RDDs with DataFrames can cut down on boilerplate code but performance will stay a problem.
Upvotes: 2