Reputation: 145
I'd like to speed up the following calculations handling r
rays and n
spheres. Here is what I got so far:
# shape of mu1 and mu2 is (r, n)
# shape of rays is (r, 3)
# note that intersections has 2n columns because for every sphere one can
# get up to two intersections (secant, tangent, no intersection)
intersections = np.empty((r, 2*n, 3))
for col in range(n):
intersections[:, col, :] = rays * mu1[:, col][:, np.newaxis]
intersections[:, col + n, :] = rays * mu2[:, col][:, np.newaxis]
# [...]
# calculate euclidean distance from the center of gravity (0,0,0)
distances = np.empty((r, 2 * n))
for col in range(n):
distances[:, col] = np.linalg.norm(intersections[:, col], axis=1)
distances[:, col + n] = np.linalg.norm(intersections[:, col + n], axis=1)
I tried speeding things up by avoiding the for
-Loops, but couldn't figure out how to broadcast the arrays properly so that I only need a single function call. Any help is much appreciated.
Upvotes: 2
Views: 105
Reputation: 221504
Here's a vectorized way using broadcasting
-
intersections = np.hstack((mu1,mu2))[...,None]*rays[:,None,:]
distances = np.sqrt((intersections**2).sum(2))
The last step could be replaced with an use of np.einsum
like so -
distances = np.sqrt(np.einsum('ijk,ijk->ij',intersections,intersections))
Or replace almost the whole thing with np.einsum
for another vectorized way, like so -
mu = np.hstack((mu1,mu2))
distances = np.sqrt(np.einsum('ij,ij,ik,ik->ij',mu,mu,rays,rays))
Runtime tests and verify outputs -
def original_app(mu1,mu2,rays):
intersections = np.empty((r, 2*n, 3))
for col in range(n):
intersections[:, col, :] = rays * mu1[:, col][:, np.newaxis]
intersections[:, col + n, :] = rays * mu2[:, col][:, np.newaxis]
distances = np.empty((r, 2 * n))
for col in range(n):
distances[:, col] = np.linalg.norm(intersections[:, col], axis=1)
distances[:, col + n] = np.linalg.norm(intersections[:, col + n], axis=1)
return distances
def vectorized_app1(mu1,mu2,rays):
intersections = np.hstack((mu1,mu2))[...,None]*rays[:,None,:]
return np.sqrt((intersections**2).sum(2))
def vectorized_app2(mu1,mu2,rays):
intersections = np.hstack((mu1,mu2))[...,None]*rays[:,None,:]
return np.sqrt(np.einsum('ijk,ijk->ij',intersections,intersections))
def vectorized_app3(mu1,mu2,rays):
mu = np.hstack((mu1,mu2))
return np.sqrt(np.einsum('ij,ij,ik,ik->ij',mu,mu,rays,rays))
Timings -
In [101]: # Inputs
...: r = 1000
...: n = 1000
...: mu1 = np.random.rand(r, n)
...: mu2 = np.random.rand(r, n)
...: rays = np.random.rand(r, 3)
In [102]: np.allclose(original_app(mu1,mu2,rays),vectorized_app1(mu1,mu2,rays))
Out[102]: True
In [103]: np.allclose(original_app(mu1,mu2,rays),vectorized_app2(mu1,mu2,rays))
Out[103]: True
In [104]: np.allclose(original_app(mu1,mu2,rays),vectorized_app3(mu1,mu2,rays))
Out[104]: True
In [105]: %timeit original_app(mu1,mu2,rays)
...: %timeit vectorized_app1(mu1,mu2,rays)
...: %timeit vectorized_app2(mu1,mu2,rays)
...: %timeit vectorized_app3(mu1,mu2,rays)
...:
1 loops, best of 3: 306 ms per loop
1 loops, best of 3: 215 ms per loop
10 loops, best of 3: 140 ms per loop
10 loops, best of 3: 136 ms per loop
Upvotes: 2