Reputation: 1429
I have a Collection with a simple Document to store impressions
and conversions
with the following structure:
/* 1 */
{
"_id" : ObjectId("566f1ef857c1e6dd3123050a"),
"path_id" : ObjectId("55944c1ebe244fd19cbf510b"),
"data_type" : "impression",
"created_at" : ISODate("2015-12-14T19:56:40.100Z"),
"__v" : 0
}
/* 2 */
{
"_id" : ObjectId("566f1fc9ac964e6f327c55d6"),
"path_id" : ObjectId("55944c1ebe244fd19cbf510b"),
"data_type" : "conversion",
"created_at" : ISODate("2015-12-14T20:00:09.972Z"),
"__v" : 0
}
/* 3 */
{
"_id" : ObjectId("566f2896739f6afa4485f327"),
"path_id" : ObjectId("562e594315ef3d8c3f05d219"),
"data_type" : "impression",
"created_at" : ISODate("2015-12-14T20:37:42.139Z"),
"__v" : 0
}
/* 4 */
{
"_id" : ObjectId("566f28e5739f6afa4485f328"),
"path_id" : ObjectId("562e594315ef3d8c3f05d219"),
"data_type" : "impression",
"created_at" : ISODate("2015-12-14T20:39:01.233Z"),
"__v" : 0
}
I'm able to group and count by data_type
, but what I need to do is group by date
and then count the data_type
in order to get the following result:
[
{
'_id': 'Y',
'conversions': 20,
'impressions': 2703,
'date': '2015-12-14'
},
{
'_id': 'Z',
'conversions': 10,
'impressions': 1703,
'date': '2015-12-13'
}
]
The code I have right now is the following, but it only groups by data_type
. I'm trying to add a project to regroup by date with no luck so far.
var path_id = new mongoose.Types.ObjectId( req.body.path_id );
var match = {
'path_id': {
$eq: path_id
}
};
var group = {
'_id': '$data_type',
'count': {
'$sum': 1
}
}
Hit.aggregate( [ {
$match: match
}, {
$group: group
} ], function( err, res ) {
console.log( res );
} );
The result is
POST /api/hits/bypath 200 30ms - 15b
[ { _id: 'conversion', count: 2 },
{ _id: 'impression', count: 2703 } ]
Upvotes: 4
Views: 2261
Reputation: 1568
To do nested group by date, you have to use to Date aggregation operator $dateToString.
Here is query
db.hits.aggregate([
{
"$project": {
"created_at": {
"$dateToString": {
"format": "%Y-%m-%d",
"date": "$created_at"
}
},
"data_type": true
}
},
{
"$group": {
"_id": {
"data_type": "$data_type",
"created_at": "$created_at"
},
"count": {
"$sum": 1
}
}
},
{
"$group": {
"_id": {
"data_type": "$_id.data_type"
},
"data":{ "$addToSet" : { count: "$count", date: "$_id.created_at" } }
}
}
])
If you want to match before group by operation based on condition, Add as following in the query
{
"$match": {
"path_id": {
"$eq": "<path_id>"
}
}
}
Upvotes: 3
Reputation: 11
you can use Date Aggregation Operators to project the day/month/year fields and then group by them
{
"$project": {
"y": {
"$year": "$created_at"
},
"m": {
"$month": "$created_at"
},
"d": {
"$dayOfMonth": "$created_at"
},
"data_type" : 1
}
},
{
"$group": {
"_id": {
"year": "$y",
"month": "$m",
"day": "$d",
"data_type": "$data_type"
},
count: {
"$sum": 1
}
}
}
and will output in this format:
"_id": {
"year": 2015,
"month": 10,
"day": 5,
"data_type": "impression"
},
count: 10
and then group again by date to combine the types in one document
{
"$group": {
"_id": {
"year": "$_id.year",
"month": "$_id.month",
"day": "$_id.day"
},
types: {"$push":"$_id.data_type"},
counters: {"$push":"$count"}
}
}
which will result in this:
"_id": {
"year": 2015,
"month": 10,
"day": 5
},
types: ["impression", "conversion"]
counters: [10, 5]
there might be a more elegant or faster (with 1 group) way to do this though, i am not sure.
Upvotes: 0