Reputation: 15221
I see that set_xscale
accepts a base
parameter, but I also want to scale with a factor; i.e. if the base is 4 and the factor is 10, then:
40, 160, 640, ...
Also, the documentation says that the sub-grid values represented by subsx
should be integers, but I will want floating-point values.
What is the cleanest way to do this?
Upvotes: 1
Views: 202
Reputation: 74162
I'm not aware of any built-in method to apply a scaling factor after the exponent, but you could create a custom tick locator and formatter by subclassing matplotlib.ticker.LogLocator
and matplotlib.ticker.LogFormatter
.
Here's a fairly quick-and-dirty hack that does what you're looking for:
from matplotlib import pyplot as plt
from matplotlib.ticker import LogLocator, LogFormatter, ScalarFormatter, \
is_close_to_int, nearest_long
import numpy as np
import math
class ScaledLogLocator(LogLocator):
def __init__(self, *args, scale=10.0, **kwargs):
self._scale = scale
LogLocator.__init__(self, *args, **kwargs)
def view_limits(self, vmin, vmax):
s = self._scale
vmin, vmax = LogLocator.view_limits(self, vmin / s, vmax / s)
return s * vmin, s * vmax
def tick_values(self, vmin, vmax):
s = self._scale
locs = LogLocator.tick_values(self, vmin / s, vmax / s)
return s * locs
class ScaledLogFormatter(LogFormatter):
def __init__(self, *args, scale=10.0, **kwargs):
self._scale = scale
LogFormatter.__init__(self, *args, **kwargs)
def __call__(self, x, pos=None):
b = self._base
s = self._scale
# only label the decades
if x == 0:
return '$\mathdefault{0}$'
fx = math.log(abs(x / s)) / math.log(b)
is_decade = is_close_to_int(fx)
sign_string = '-' if x < 0 else ''
# use string formatting of the base if it is not an integer
if b % 1 == 0.0:
base = '%d' % b
else:
base = '%s' % b
scale = '%d' % s
if not is_decade and self.labelOnlyBase:
return ''
elif not is_decade:
return ('$\mathdefault{%s%s\times%s^{%.2f}}$'
% (sign_string, scale, base, fx))
else:
return (r'$%s%s\times%s^{%d}$'
% (sign_string, scale, base, nearest_long(fx)))
For example:
fig, ax = plt.subplots(1, 1)
x = np.arange(1000)
y = np.random.randn(1000)
ax.plot(x, y)
ax.set_xscale('log')
subs = np.linspace(0, 1, 10)
majloc = ScaledLogLocator(scale=10, base=4)
minloc = ScaledLogLocator(scale=10, base=4, subs=subs)
fmt = ScaledLogFormatter(scale=10, base=4)
ax.xaxis.set_major_locator(majloc)
ax.xaxis.set_minor_locator(minloc)
ax.xaxis.set_major_formatter(fmt)
ax.grid(True)
# show the same tick locations with non-exponential labels
ax2 = ax.twiny()
ax2.set_xscale('log')
ax2.set_xlim(*ax.get_xlim())
fmt2 = ScalarFormatter()
ax2.xaxis.set_major_locator(majloc)
ax2.xaxis.set_minor_locator(minloc)
ax2.xaxis.set_major_formatter(fmt2)
Upvotes: 1