Reputation: 131
I am trying to get a solution for the Rossler attractor system using RK-4, with parameters a=0.2, b=0.2, c=6 and initial conditions x0=-5.6, y0=0, z0=0. I tried solving using Fortran but the result is only displaying the initial conditions even after 1000 iterations. What mistakes am I making?
implicit none
external rossler
integer::i,j=0,n,nstep
real::a,b,c,y1(3),t0,dt,t1,t2,ya(3),yb(3),yd(3),t,x0,y0,z0,x(1000),y(1000),z(1000),k1(3),k2(3),k3(3),k4(3),h
print *, "enter the values of a,b,c"
read (*,*) a,b,c
print *, "enter the values of x0,y0,z0"
read (*,*) x0,y0,z0
n=3
t0=0.0
h=0.05
ya(1)=x0
ya(2)=y0
ya(3)=z0
nstep=1000
do i=1,nstep
t1=t0
t2=t0+h
call rk4(rossler,t1,t2,1,N,k1,k2,k3,k4,Ya,Y1,Yb)
x(i)=ya(1)
y(i)=ya(2)
z(i)=ya(3)
open (99,file="rossler.txt")
write(99,*) x(i),y(i),z(i)
end do
end program
subroutine rossler(T,Yd,YB,N)
implicit none
integer n
real t,yb(n),yd(n),a,b,c
yd(1)=-yb(2)-yb(3)
Yd(2)=yb(1)+a*yb(2)
Yd(3)=b+yb(3)*(yb(1)-c)
return
end
subroutine rk4(rossler,t1,t2,nstep,N,k1,k2,k3,k4,Ya,Y1,Yb)
implicit none
external rossler
integer nstep,n,i,j
REAL T1,T2,Ya(N),k1(n),k2(n),k3(n),k4(n),H,Y1(N),T,yb(n)
T=T1+(I-1)*H
CALL rossler(T,Yb,Ya,N)
DO J=1,N
k1(j)=YB(J)*H
end do
CONTINUE
CALL rossler(T+0.5*H,Yb,Ya+k1*0.5,N)
DO J=1,N
k2(j)=YB(J)*H
enddo
CONTINUE
CALL rossler(T+0.5*H,Yb,Ya+k2*0.5,N)
DO J=1,N
K3(J)=YB(J)*H
enddo
CONTINUE
CALL rossler(T+H,Yb,Ya+k3,N)
DO J=1,n
K4(J)=YB(J)*H
Y1(J)=Ya(J)+(k1(j)+k4(j)+2.0*(k2(j)+k3(j)))/6.0
enddo
CONTINUE
DO J=1,N
Ya(J)=Y1(j)
enddo
CONTINUE
enddo
RETURN
END
Upvotes: 0
Views: 894
Reputation: 7395
Although the question seems a duplicate of another question, here I am attaching a minimally modified code so that the OP can compare it with the original one. The essential modifications are that I have removed all the unused variables, moved a
, b
, c
, and h
to a parameter module, and cleaned up unnecessary statements (like CONTINUE
). No newer features of Fortran introduced (including interface
block for rossler
), so it is hopefully straight-forward to see how the code has been changed.
module params
real :: a, b, c, h
end module
program main
use params, only: a, b, c, h
implicit none
external rossler
integer :: i, n, nstep
real :: t, y(3)
a = 0.2
b = 0.2
c = 5.7
n = 3
t = 0.0
h = 0.05
y(1) = -5.6
y(2) = 0.0
y(3) = 0.0
nstep = 7000
open(99, file="rossler.txt")
do i = 1,nstep
call rk4 ( rossler, t, n, y )
write(99,*) y(1), y(2), y(3)
end do
end program
subroutine rossler ( t, dy, y, n )
use params, only: a, b, c
implicit none
integer n
real t, dy(n), y(n)
dy(1) = -y(2) - y(3)
dy(2) = y(1) + a * y(2)
dy(3) = b + ( y(1) - c ) * y(3)
end
subroutine rk4 ( deriv, t, n, y )
use params, only: h
implicit none
external deriv
integer n, j
real y(n), t, k1(n), k2(n), k3(n), k4(n), d(n)
call deriv ( t, d, y, n )
do j = 1,n
k1(j) = d(j) * h
enddo
call deriv ( t+0.5*h, d, y+k1*0.5, n )
DO j = 1,n
k2(j) = d(j) * h
enddo
call deriv ( t+0.5*h, d, y+k2*0.5, n )
do j = 1,n
k3(j) = d(j) * h
enddo
call deriv ( t+h, d, y+k3, n )
do j = 1,n
k4(j) = d(j) * h
y(j) = y(j) + ( k1(j) + k4(j) + 2.0 * (k2(j) + k3(j)) ) / 6.0
enddo
t = t + h
end
By choosing the parameters as a = 0.2, b = 0.2, c = 5.7
and nstep = 7000
, the modified code gave the so-called Rössler attractor, which is very beautiful and appears close in pattern to that displayed in the Wiki page. So with the minimal modifications, I believe the OP will also get a similar picture (it may be interesting to see how the pattern changes depending on parameters).
2D projection of the trajectory onto the xy plane:
Upvotes: 2
Reputation: 32366
The problem here is exactly the same as in another question, although I can no longer vote to close as a duplicate.
To make explicit and add the comments on the question: a
, b
and c
take the place of omega
from that question; the subroutine rossler
as the function fcn
.
An answer to that question addresses how this issue can be resolved.
Upvotes: 0