Reputation: 13116
I am playing with the fixed code from this question. I am getting the above error. Googling suggests it might be some kind of dimension mismatch, though my diagnostics does not show any:
with tf.Session() as sess:
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (_x_, _y_) in getb(train_X, train_Y):
print("y data raw", _y_.shape )
_y_ = tf.reshape(_y_, [-1, 1])
print( "y data ", _y_.get_shape().as_list())
print("y place holder", yy.get_shape().as_list())
print("x data", _x_.shape )
print("x place holder", xx.get_shape().as_list() )
sess.run(optimizer, feed_dict={xx: _x_, yy: _y_})
Looking at the dimensions, everything is alright:
y data raw (20,)
y data [20, 1]
y place holder [20, 1]
x data (20, 10)
x place holder [20, 10]
Error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-131-00e0bdc140b2> in <module>()
16 print("x place holder", xx.get_shape().as_list() )
17
---> 18 sess.run(optimizer, feed_dict={xx: _x_, yy: _y_})
19
20 # # Display logs per epoch step
/usr/local/lib/python3.4/dist-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict)
355 e.args = (e.message,)
356 raise e
--> 357 np_val = np.array(subfeed_val, dtype=subfeed_t.dtype.as_numpy_dtype)
358 if subfeed_t.op.type == 'Placeholder':
359 if not subfeed_t.get_shape().is_compatible_with(np_val.shape):
ValueError: setting an array element with a sequence.
Any debugging tips?
Upvotes: 2
Views: 8218
Reputation: 126154
This—not very helpful—error is raised when one of the values in the feed_dict
argument to tf.Session.run()
is a tf.Tensor
object (in this case, the result of tf.reshape()
).
The values in feed_dict
must be numpy arrays, or some value x
that can be implicitly converted to a numpy array using numpy.array(x)
. tf.Tensor
objects cannot be implicitly converted, because doing so might require a lot of work: instead you have to call sess.run(t)
to convert a tensor t
to a numpy array.
As you noticed in your answer, using np.reshape(_y_, [-1, 1])
works, because it produces a numpy array (and because _y_
is a numpy array to begin with). In general, you should always prepare data to be fed using numpy and other pure-Python operations.
Upvotes: 5
Reputation: 13116
replacing tf
reshape with plain numpy
one helped:
_y_ = np.reshape(_y_, [-1, 1])
the actual reason why is still unclear, but it works.
Upvotes: 0