Reputation: 68053
I'm trying to create a list of objects, where each object also stores 'ownership' - ie, it knows which list holds it.
In a non-template situation, it's straightforward:
class FooList; // forward declaration
class FooItem
{
public:
FooList *owner;
...
};
class FooList: private std::list<FooItem>
{
...
};
However, the list class is a template, based on the contained object type, and I'm struggling to work out how to specify this. I reckon the FooItem class now needs to be a template because the type of 'owner' can vary:
template <class E> class FooItem
{
public:
std::list<E> *owner;
};
template <class E> class FooList: private std::list<E>
{
...
};
But, now given my two templates, how can I define the new types I want? The snippet below is what I think I need, but it gives "error: Multiple declaration for BarItem"
.
class BarItem;
typedef FooList<BarItem> BarList;
typedef FooItem<BarList> BarItem;
EDIT:
Thanks to those who pointed out the issue of std::list<E>
instead of std::list<FooItem<E> >
EDIT 2:
Renamed classes to Base, Derived, BaseList, DerivedList.
My real problem was the 'circular typedef'. After some more tinkering, I think this will do what I require. It creates a 'real' BarItem class rather than just a typedef, but seems to at least compile now.
template <class E> class BaseList; // forward declaration
template <class E> class Base
{
public:
BaseList< Base<E> > *owner;
};
template <class E> class BaseList: private std::list< E >
{
};
// typedef Base<BaseList<Derived> > Derived; //This won't compile, unsurprisingly.
class Derived : public Base < BaseList<Derived> > // Surprisingly, this seems to.
{
...
};
typedef BaseList<Derived> DerivedList;
Does this seem to make sense? Is it a common idiom or something horrible?
Upvotes: 1
Views: 1752
Reputation: 40302
Are you sure you didn't want:
template <class E> class FooItem
{
public:
std::list< FooItem<E> > *owner; // owned by a list of FooItem<E>, not raw E
};
template <class E> class FooList: private std::list< FooItem<E> > // is a list of FooItem<E>, not raw E
{
...
};
The error you are getting is because you forward declare the class BarItem
but later try to redefine that name using typedef
. Not sure what you're trying to accomplish, but you'll need to introduce a third name. Maybe you meant:
class Bar;
typedef FooItem<Bar> BarItem;
typedef FooList<Bar> BarList;
EDIT: The new code you've posted certainly compiles, but seems very awkward (for one thing, the naming seems really confusing). Perhaps you should ask a new question with a more concrete example of why you think you need an 'item which is an item of lists of itself' and see if others can come up with a less awkward design.
Upvotes: 4
Reputation: 229663
If you just want to generalize your first approach to a templated FooItem
class, it would look like this:
template <class E> class FooList; // forward declaration
template <class E> class FooItem
{
public:
FooList<E> *owner;
...
};
template <class E> class FooList: private std::list< FooItem<E> >
{
...
};
If that is not what you want I'm not sure what exactly you are attempting to do.
Upvotes: 3
Reputation: 19613
Is that last set of typedef
statements correct? You posted this:
class BarItem;
typedef FooList<BarItem> BarList;
typedef FooItem<BarList> BarItem;
It's somewhat recursive, right? The first statement says there's a class BarItem
that exists elsewhere. The second statement says that the type FooList<BarItem>
(a list of BarItem
objects) can also be referred to as BarList
. The third statement says that the type FooItem<BarList>
can also be referred to as BarItem
, but BarItem
was already defined as a type by the class BarItem
statement.
So you're saying that BarItem
is a type all to itself (via the class
statement), but you're also saying that BarItem
is an alias for the type FooItem<BarList>
. Hence the conflict.
Upvotes: 3