Reputation: 8258
I have a recursive function f
that takes two parameters x
and y
. The function is uniquely determined by the first parameter; the second one merely makes things easier.
I now want to memoise that function w.r.t. it's first parameter while ignoring the second one. (I.e. f
is evaluated at most one for every value of x
)
What is the easiest way to do that? At the moment, I simply define an array containing all values recursively, but that is a somewhat ad-hoc solution. I would prefer some kind of memoisation combinator that I can just throw at my function.
EDIT: to clarify, the function f
takes a pair of integers and a list. The first integer is some parameter value, the second one denotes the index of an element in some global list xs
to consume.
To avoid indexing the list, I pass the partially consumed list to f
as well, but obviously, the invariant is that if the first parameter is (m, n)
, the second one will always be drop n xs
, so the result is uniquely determined by the first parameter.
Just using a memoisation combinator on the partially applied function will not work, since that will leave an unevaluated thunk \xs -> …
lying around. I could probably wrap the two parameters in a datatype whose Eq
instance ignores the second value (and similarly for other instances), but that seems like a very ad-hoc solution. Is there not an easier way?
EDIT2: The concrete function I want to memoise:
g :: [(Int, Int)] -> Int -> Int
g xs n = f 0 n
where f :: Int -> Int -> Int
f _ 0 = 0
f m n
| m == length xs = 0
| w > n = f (m + 1) n
| otherwise = maximum [f (m + 1) n, v + f (m + 1) (n - w)]
where (w, v) = xs !! m
To avoid the expensive indexing operation, I instead pass the partially-consumed list to f
as well:
g' :: [(Int, Int)] -> Int -> Int
g' xs n = f xs 0 n
where f :: [(Int, Int)] -> Int -> Int -> Int
f [] _ _ = 0
f _ _ 0 = 0
f ((w,v) : xs) m n
| w > n = f xs (m + 1) n
| otherwise = maximum [f xs (m + 1) n, v + f xs (m + 1) (n - w)]
Memoisation of f
w.r.t. the list parameter is, of course, unnecessary, since the list does not (morally) influence the result. I would therefore like the memoisation to simply ignore the list parameter.
Upvotes: 1
Views: 198
Reputation: 74204
Your function is unnecessarily complicated. You don't need the index m
at all:
foo :: [(Int, Int)] -> Int -> Int
foo [] _ = 0
foo _ 0 = 0
foo ((w,v):xs) n
| w > n = foo xs n
| otherwise = foo xs n `max` foo xs (n - w) + v
Now if you want to memoize foo
then both the arguments must be considered (as it should be).
We'll use the monadic memoization mixin method to memoize foo
:
First, we create an uncurried version of foo
(because we want to memoize both arguments):
foo' :: ([(Int, Int)], Int) -> Int
foo' ([], _) = 0
foo' (_, 0) = 0
foo' ((w,v):xs, n)
| w > n = foo' (xs, n)
| otherwise = foo' (xs, n) `max` foo' (xs, n - w) + v
Next, we monadify the function foo'
(because we want to thread a memo table in the function):
foo' :: Monad m => ([(Int, Int)], Int) -> m Int
foo' ([], _) = return 0
foo' (_, 0) = return 0
foo' ((w,v):xs, n)
| w > n = foo' (xs, n)
| otherwise = do
a <- foo' (xs, n)
b <- foo' (xs, n - w)
return (a `max` b + v)
Then, we open the self-reference in foo'
(because we want to call the memoized function):
type Endo a = a -> a
foo' :: Monad m => Endo (([(Int, Int)], Int) -> Int)
foo' _ ([], _) = return 0
foo' _ (_, 0) = return 0
foo' self ((w,v):xs, n)
| w > n = foo' (xs, n)
| otherwise = do
a <- self (xs, n)
b <- self (xs, n - w)
return (a `max` b + v)
We'll use the following memoization mixin to memoize our function foo'
:
type Dict a b m = (a -> m (Maybe b), a -> b -> m ())
memo :: Monad m => Dict a b m -> Endo (a -> m b)
memo (check, store) super a = do
b <- check a
case b of
Just b -> return b
Nothing -> do
b <- super a
store a b
return b
Our dictionary (memo table) will use the State
monad and a Map
data structure:
import Prelude hiding (lookup)
import Control.Monad.State
import Data.Map.Strict
mapDict :: Ord a => Dict a b (State (Map a b))
mapDict = (check, store) where
check a = gets (lookup a)
store a b = modify (insert a b)
Finally, we combine everything to create a memoized function memoFoo
:
import Data.Function (fix)
type MapMemoized a b = a -> State (Map a b) b
memoFoo :: MapMemoized ([(Int, Int)], Int) Int
memoFoo = fix (memo mapDict . foo')
We can recover the original function foo
as follows:
foo :: [(Int, Int)] -> Int -> Int
foo xs n = evalState (memoFoo (xs, n)) empty
Hope that helps.
Upvotes: 2