hoaphumanoid
hoaphumanoid

Reputation: 997

Is there any technique to know in advance the amount of training examples you need to make deep learning get good performance?

Deep learning has been a revolution recently and its success is related with the huge amount of data that we can currently manage and the generalization of the GPUs.

So here is the problem I'm facing. I know that deep neural nets have the best performance, there is no doubt about it. However, they have a good performance when the number of training examples is huge. If the number of training examples is low it is better to use a SVM or decision trees.

But what is huge? what is low? In this paper of face recognition (FaceNet by Google) they show the performance vs the flops (which can be related with the number of training examples)

enter image description here

They used between 100M and 200M training examples, which is huge.

My question is: Is there any method to predict in advance the number of training examples I need to have a good performance in deep learning??? The reason I ask this is because it is a waste of time to manually classify a dataset if the performance is not going to be good.

Upvotes: 1

Views: 699

Answers (1)

lejlot
lejlot

Reputation: 66805

My question is: Is there any method to predict in advance the number of training examples I need to have a good performance in deep learning??? The reason I ask this is because it is a waste of time to manually classify a dataset if the performance is not going to be good.

The short answer is no. You do not have this kind of knowledge, furthermore you will never have. These kind of problems are impossible to solve, ever.

What you can have are just some general heuristics/empirical knowledge, which will say if it is probable that DL will not work well (as it is possible to predict fail of the method, while nearly impossible to predict the success), nothing more. In current research, DL rarely works well for datasets smaller than hundreads thousands/milions of samples (I do not count MNIST because everything works well on MNIST). Furthermore, DL is heavily studied actually in just two types of problems - NLP and image processing, thus you cannot really extraplate it to any other kind of problems (no free lunch theorem).

Update

Just to make it a bit more clear. What you are asking about is to predit whether given estimator (or set of estimators) will yield a good results given a particular training set. In fact you even restrict just to the size.

The simpliest proof (based on your simplification) is as follows: for any N (sample size) I can construct N-mode (or N^2 to make it even more obvious) distribution which no estimator can reasonably estimate (including deep neural network) and I can construct trivial data with just one label (thus perfect model requires just one sample). End of proof (there are two different answers for the same N).

Now let us assume that we do have access to the training samples (without labels for now) and not just sample size. Now we are given X (training samples) of size N. Again I can construct N-mode labeling yielding impossible to estimate distribution (by anything) and trivial labeling (just a single label!). Again - two different answers for the exact same input.

Ok, so maybe given training samples and labels we can predict what will behave well? Now we cannot manipulate samples nor labels to show that there are no such function. So we have to get back to statistics and what we are trying to answer. We are asking about expected value of loss function over whole probability distribution which generated our training samples. So now again, the whole "clue" is to see, that I can manipulate the underlying distributions (construct many different ones, many of which impossible to model well by deep neural network) and still expect that my training samples come from them. This is what statisticians call the problem of having non-representible sample from a pdf. In particular, in ML, we often relate to this problem with curse of dimensionality. In simple words - in order to estimate the probability well we need enormous number of samples. Silverman shown that even if you know that your data is just a normal distribution and you ask "what is value in 0?" You need exponentialy many samples (as compared to space dimensionality). In practise our distributions are multi-modal, complex and unknown thus this amount is even higher. We are quite safe to say that given number of samples we could ever gather we cannot ever estimate reasonably well distributions with more than 10 dimensions. Consequently - whatever we do to minimize the expected error we are just using heuristics, which connect the empirical error (fitting to the data) with some kind of regularization (removing overfitting, usually by putting some prior assumptions on distributions families). To sum up we cannot construct a method able to distinguish if our model will behave good, because this would require deciding which "complexity" distribution generated our samples. There will be some simple cases when we can do it - and probably they will say something like "oh! this data is so simple even knn will work well!". You cannot have generic tool, for DNN or any other (complex) model though (to be strict - we can have such predictor for very simple models, because they simply are so limited that we can easily check if your data follows this extreme simplicity or not).

Consequently, this boils down nearly to the same question - to actually building a model... thus you will need to try and validate your approach (thus - train DNN to answer if DNN works well). You can use cross validation, bootstraping or anything else here, but all essentialy do the same - build multiple models of your desired type and validate it.

To sum up

I do not claim we will not have a good heuristics, heuristic drive many parts of ML quite well. I only answer if there is a method able to answer your question - and there is no such thing and cannot exist. There can be many rules of thumb, which for some problems (classes of problems) will work well. And we already do have such:

  • for NLP/2d images you should have ~100,000 samples at least to work with DNN
  • having lots of unlabeled instances can partially substitute the above number (thus you can have like 30,000 labeled ones + 70,000 unlabeled) with pretty reasonable results

Furthermore this does not mean that given this size of data DNN will be better than kernelized SVM or even linear model. This is exactly what I was refering to earlier - you can easily construct counterexamples of distributions where SVM will work the same or even better despite number of samples. The same applies for any other technique.

Yet still, even if you are just interested if DNN will work well (and not better than others) these are just empirical, trivial heuristics, which are based on at most 10 (!) types of problems. This could be very harmfull to treat these as rules or methods. This are just rough, first intuitions gained through extremely unstructured, random research that happened in last decade.

Ok, so I am lost now... when should I use DL? And the answer is exteremly simple:

Use deep learning only if:

  • You already tested "shallow" techniques and they do not work well
  • You have large amounts of data
  • You have huge computational resources
  • You have experience with neural networks (this are very tricky and ungreatful models, really)
  • You have great amount of time to spare, even if you will just get a few % better results as an effect.

Upvotes: 5

Related Questions