Reputation: 101
Using numpy, how can I subtract the elements of a numpy array that are matrices by each other?
a = np.array([ [ [1., 2., 3.], [4., 5., 6.], [7., 8., 9.] ],
[ [20., 21., 22.], [23., 24., 25.], [26., 27., 28.] ],
[ [30., 31., 32.], [33., 34., 35.], [36., 37., 38.] ]
])
or in plain English:
a = ([matrix1], [matrix2], [matrix3])
I want to get a np.array
that calculates as follows:
[matrix1-matrix1][matrix1-matrix2][matrix1-matrix3]
[matrix2-matrix1][matrix2-matrix2][matrix2-matrix3]
[matrix3-matrix1][matrix3-matrix2][matrix3-matrix3]
Diagonal will be a matrix with zero values in the matrix.
How can I accomplish this?
Upvotes: 4
Views: 500
Reputation: 231385
Your a
is a 3d array
In [258]: a = np.array([ [ [1., 2., 3.], [4., 5., 6.], [7., 8., 9.] ],
.....: [ [20., 21., 22.], [23., 24., 25.], [26., 27., 28.] ],
.....: [ [30., 31., 32.], [33., 34., 35.], [36., 37., 38.] ]
.....: ])
In [259]: a.shape
Out[259]: (3, 3, 3)
2d arrays can be accessed with indexing
In [260]: a[0,:,:]
Out[260]:
array([[ 1., 2., 3.],
[ 4., 5., 6.],
[ 7., 8., 9.]])
and a tuple of 3 2d arrays can be obtained with:
In [261]: (a[0,:,:],a[1,:,:],a[2,:,:])
Out[261]:
(array([[ 1., 2., 3.],
[ 4., 5., 6.],
[ 7., 8., 9.]]),
array([[ 20., 21., 22.],
[ 23., 24., 25.],
[ 26., 27., 28.]]),
array([[ 30., 31., 32.],
[ 33., 34., 35.],
[ 36., 37., 38.]]))
This is equivalent to your (matrix1, matrix2, matrix3)
expression. I'm using 2d array
instead of matrix
because numpy
has an array subclass called matrix
, so the term can be confusing.
A way to generate your subarray cross-difference is with broadcasting. I use the None
syntax to expand the dimension of a
.
In [262]: a[:,None,:,:]-a[None,:,:,:]
Out[262]:
array([[[[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]],
[[-19., -19., -19.],
[-19., -19., -19.],
[-19., -19., -19.]],
...
[[ 10., 10., 10.],
[ 10., 10., 10.],
[ 10., 10., 10.]],
[[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]]]])
In [263]: _.shape
Out[263]: (3, 3, 3, 3)
The shape of this new array is 4d, which can be thought of as a 3x3 array of 3x3 arrays. And yes, the diagonal elements A[i,i,:,:]
are all 0s.
In [264]: A=a[:,None,:,:]-a[None,:,:,:]
In [265]: A[2,2,:,:]
Out[265]:
array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
Upvotes: 2