Reputation: 8449
In the answers to how to dynamically update a plot in a loop in ipython notebook (within one cell), an example is given of how to dynamically update a plot inside a Jupyter notebook within a Python loop. However, this works by destroying and re-creating the plot on every iteration, and a comment in one of the threads notes that this situation can be improved by using the new-ish %matplotlib nbagg
magic, which provides an interactive figure embedded in the notebook, rather than a static image.
However, this wonderful new nbagg
feature seems to be completely undocumented as far as I can tell, and I'm unable to find an example of how to use it to dynamically update a plot. Thus my question is, how does one efficiently update an existing plot in a Jupyter/Python notebook, using the nbagg backend? Since dynamically updating plots in matplotlib is a tricky issue in general, a simple working example would be an enormous help. A pointer to any documentation on the topic would also be extremely helpful.
To be clear what I'm asking for: what I want to do is to run some simulation code for a few iterations, then draw a plot of its current state, then run it for a few more iterations, then update the plot to reflect the current state, and so on. So the idea is to draw a plot and then, without any interaction from the user, update the data in the plot without destroying and re-creating the whole thing.
Here is some slightly modified code from the answer to the linked question above, which achieves this by re-drawing the whole figure every time. I want to achieve the same result, but more efficiently using nbagg
.
%matplotlib inline
import time
import pylab as pl
from IPython import display
for i in range(10):
pl.clf()
pl.plot(pl.randn(100))
display.display(pl.gcf())
display.clear_output(wait=True)
time.sleep(1.0)
Upvotes: 121
Views: 94643
Reputation: 2885
Here is an example that updates a plot in a loop. It updates the data in the figure and does not redraw the whole figure every time. It does block execution, though if you're interested in running a finite set of simulations and saving the results somewhere, it may not be a problem for you.
The %matplotlib widget
magic requires the ipympl
Matplotlib Jupyter Extension package. You can install a working environment with pip install jupyter ipympl
%matplotlib widget
import numpy as np
import matplotlib.pyplot as plt
import time
def pltsin(ax, colors=['b']):
x = np.linspace(0,1,100)
if ax.lines:
for line in ax.lines:
line.set_xdata(x)
y = np.random.random(size=(100,1))
line.set_ydata(y)
else:
for color in colors:
y = np.random.random(size=(100,1))
ax.plot(x, y, color)
fig.canvas.draw()
fig,ax = plt.subplots(1,1)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_xlim(0,1)
ax.set_ylim(0,1)
plt.show()
# run this cell to dynamically update plot
for f in range(5):
pltsin(ax, ['b', 'r'])
time.sleep(1)
I put this up on nbviewer here, and here's a direct link to the gist
Upvotes: 77
Reputation: 4651
The canvas.draw
method of the figure dynamically updates its graphs, for the current figure:
from matplotlib import pyplot as plt
plt.gcf().canvas.draw()
Upvotes: 0
Reputation: 2107
I'm using jupyter-lab and this works for me (adapt it to your case):
from IPython.display import clear_output
from matplotlib import pyplot as plt
import numpy as np
import collections
%matplotlib inline
def live_plot(data_dict, figsize=(7,5), title=''):
clear_output(wait=True)
plt.figure(figsize=figsize)
for label,data in data_dict.items():
plt.plot(data, label=label)
plt.title(title)
plt.grid(True)
plt.xlabel('epoch')
plt.legend(loc='center left') # the plot evolves to the right
plt.show();
Then in a loop you populate a dictionary and you pass it to live_plot()
:
data = collections.defaultdict(list)
for i in range(100):
data['foo'].append(np.random.random())
data['bar'].append(np.random.random())
data['baz'].append(np.random.random())
live_plot(data)
make sure you have a few cells below the plot, otherwise the view snaps in place each time the plot is redrawn.
Upvotes: 34
Reputation: 702
If you don't want to clear all outputs, you can use display_id=True
to obtain a handle and use .update()
on it:
import numpy as np
import matplotlib.pyplot as plt
import time
from IPython import display
def pltsin(ax, *,hdisplay, colors=['b']):
x = np.linspace(0,1,100)
if ax.lines:
for line in ax.lines:
line.set_xdata(x)
y = np.random.random(size=(100,1))
line.set_ydata(y)
else:
for color in colors:
y = np.random.random(size=(100,1))
ax.plot(x, y, color)
hdisplay.update(fig)
fig,ax = plt.subplots(1,1)
hdisplay = display.display("", display_id=True)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_xlim(0,1)
ax.set_ylim(0,1)
for f in range(5):
pltsin(ax, colors=['b', 'r'], hdisplay=hdisplay)
time.sleep(1)
plt.close(fig)
(adapted from @pneumatics)
Upvotes: 14
Reputation: 1911
I've adapted @Ziofil answer and modified it to accept x,y as list and output a scatter plot plus a linear trend on the same plot.
from IPython.display import clear_output
from matplotlib import pyplot as plt
%matplotlib inline
def live_plot(x, y, figsize=(7,5), title=''):
clear_output(wait=True)
plt.figure(figsize=figsize)
plt.xlim(0, training_steps)
plt.ylim(0, 100)
x= [float(i) for i in x]
y= [float(i) for i in y]
if len(x) > 1:
plt.scatter(x,y, label='axis y', color='k')
m, b = np.polyfit(x, y, 1)
plt.plot(x, [x * m for x in x] + b)
plt.title(title)
plt.grid(True)
plt.xlabel('axis x')
plt.ylabel('axis y')
plt.show();
you just need to call live_plot(x, y)
inside a loop.
here's how it looks:
Upvotes: 1