Reputation: 25
This is the first time that I ask a question on stack overflow. I have tried searching for the answer but I cannot find exactly what I am looking for. I hope someone can help.
I have a huge data set of 20416 observation. Basically, I have 83 subjects and for each subject I have several observations. However, the number of observations per subject is not the same (e.g. subject 1 has 256 observations, while subject 2 has only 64 observations). I want to add an extra column containing the mean of the observations for each subject (the observations are reading times (RT)).
I tried with the aggregate function:
aggregate (RT ~ su, data, mean)
This formula returns the correct mean per subject. But then I cannot simply do the following:
data$mean <- aggregate (RT ~ su, data, mean)
as R returns this error:
Error in $<-.data.frame(tmp, "mean", value = list(su = 1:83, RT = c(378.1328125, : replacement has 83 rows, data has 20416
I understand that the formula lacks a command specifying that the mean for each subject has to be repeated for all the subject's rows (e.g. if subject 1 has 256 rows, the mean for subject 1 has to be repeated for 256 rows, if subject 2 has 64 rows, the mean for subject 2 has to be repeated for 64 rows and so forth).
How can I achieve this in R?
Upvotes: 2
Views: 5053
Reputation: 145825
Staying in Base R, ave
is intended for this use:
data$mean = with(data, ave(x = RT, su, FUN = mean))
Upvotes: 5
Reputation: 1246
Another compelling way of handling this without generating extra data objects is by using group_by
of dplyr
package:
# Generating some data
data <- data.table::data.table(
su = sample(letters[1:5], size = 14, replace = TRUE),
RT = rnorm(14))[order(su)]
# Performing
> data %>% group_by(su) %>%
+ mutate(Mean = mean(RT)) %>%
+ ungroup()
Source: local data table [14 x 3]
su RT Mean
1 a -1.62841746 0.2096967
2 a 0.07286149 0.2096967
3 a 0.02429030 0.2096967
4 a 0.98882343 0.2096967
5 a 0.95407214 0.2096967
6 a 1.18823435 0.2096967
7 a -0.13198711 0.2096967
8 b -0.34897914 0.1469982
9 b 0.64297557 0.1469982
10 c -0.58995261 -0.5899526
11 d -0.95995198 0.3067978
12 d 1.57354754 0.3067978
13 e 0.43071258 0.2462978
14 e 0.06188307 0.2462978
Upvotes: 1
Reputation: 18612
The data.table
syntax lends itself well to this kind of problem:
Dt[, Mean := mean(Value), by = "ID"][]
# ID Value Mean
# 1: a 0.05881156 0.004426491
# 2: a -0.04995858 0.004426491
# 3: b 0.64054432 0.038809830
# 4: b -0.56292466 0.038809830
# 5: c 0.44254622 0.099747707
# 6: c -0.10771992 0.099747707
# 7: c -0.03558318 0.099747707
# 8: d 0.56727423 0.532377247
# 9: d -0.60962095 0.532377247
# 10: d 1.13808538 0.532377247
# 11: d 1.03377033 0.532377247
# 12: e 1.38789640 0.568760936
# 13: e -0.57420308 0.568760936
# 14: e 0.89258949 0.568760936
As we are applying a grouped operation (by = "ID"
), data.table
will automatically replicate each group's mean(Value)
the appropriate number of times (avoiding the error you ran into above).
Data:
Dt <- data.table::data.table(
ID = sample(letters[1:5], size = 14, replace = TRUE),
Value = rnorm(14))[order(ID)]
Upvotes: 6