Reputation: 705
Let's say I define a custom annotation called @Unsafe
.
I'd like to provide an annotation processor which will detect references to methods annotated with @Unsafe
and print a warning.
For example, given this code ...
public class Foo {
@Unsafe
public void doSomething() { ... }
}
public class Bar {
public static void main(String[] args) {
new Foo().doSomething();
}
}
... I want the compiler to print something like:
WARN > Bar.java, line 3 : Call to Unsafe API - Foo.doSomething()
It is very similar in spirit to @Deprecated
, but my annotation is communicating something different, so I can't use @Deprecated
directly. Is there a way to achieve this with an annotation processor? The annotation processor API seems to be more focused on the entities applying the annotations (Foo.java
in my example) than entities which reference annotated members.
This question provides a technique to achieve it as a separate build step using ASM. But I'm wondering if I can do it in a more natural way with javac & annotation processing?
Upvotes: 15
Views: 3986
Reputation: 1076
The AbstractProcessor below processes greghmerrill's @Unsafe annotation and emits warnings on method calls to @Unsafe annotated methods.
It is a slight modification of greghmerrills own answer, which was great, but I had some problems getting my IDEs incremental compiler (I am using Netbeans) to detect the warnings/errors etc emitted from the plugin - only those I printed from the processor was shown, though the behaviour was as expected when I ran 'mvn clean compile' ( I am using Maven). Whether this is due to some problem from my hand, or a points to difference between Plugins and AbstractProcessors/the phases of the compilation process, I do not know.
Anyway:
package com.hervian.annotationutils.target;
import com.sun.source.tree.MethodInvocationTree;
import com.sun.source.util.*;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.TreeInfo;
import java.util.Set;
import javax.annotation.processing.*;
import javax.lang.model.SourceVersion;
import javax.lang.model.element.*;
import javax.tools.Diagnostic;
@SupportedAnnotationTypes({"com.hervian.annotationutils.target.Unsafe"})
@SupportedSourceVersion(SourceVersion.RELEASE_8)
public class UnsafeAnnotationProcessor extends AbstractProcessor implements TaskListener {
Trees trees;
@Override
public synchronized void init(ProcessingEnvironment processingEnv) {
super.init(processingEnv);
trees = Trees.instance(processingEnv);
JavacTask.instance(processingEnv).setTaskListener(this);
}
@Override
public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) {
//Process @Unsafe annotated methods if needed
return true;
}
@Override public void finished(TaskEvent taskEvt) {
if (taskEvt.getKind() == TaskEvent.Kind.ANALYZE) {
taskEvt.getCompilationUnit().accept(new TreeScanner<Void, Void>() {
@Override
public Void visitMethodInvocation(MethodInvocationTree methodInv, Void v) {
Element method = TreeInfo.symbol((JCTree) methodInv.getMethodSelect());
Unsafe unsafe = method.getAnnotation(Unsafe.class);
if (unsafe != null) {
JCTree jcTree = (JCTree) methodInv.getMethodSelect();
trees.printMessage(Diagnostic.Kind.WARNING, "Call to unsafe method.", jcTree, taskEvt.getCompilationUnit());
}
return super.visitMethodInvocation(methodInv, v);
}
}, null);
}
}
@Override public void started(TaskEvent taskEvt) { } }
When using the annotation and making calls to the annotated method it will look like this:
One needs to remember to add the fully qualified class name of the annotation processor to a META-INF/service file named javax.annotation.processing.Processor. This makes it available to the ServiceLoader framework.
Maven users having trouble with the com.sun** imports may find this answer from AnimeshSharma helpful.
I keep my annotation + annotation processor in a separate project. I had to disable annotation processing by adding the following to the pom:
<build>
<pluginManagement>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgument>-proc:none</compilerArgument>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build>
Using the annotation and having the processor do its work was simple: In my other project (the one where the screenshot of method foo() is from) I simply added a dependency to the project containing the annotation and processor.
Lastly it should be mentioned that I am new to AbstractProcessors and TaskListeners. I do, fx, not have an overview of the performance or robustness of the code. The goal was simply to "get it to work" and provide a stub for similar projects.
Upvotes: 1
Reputation: 705
I think I could have technically achieved my goal using the response from @mernst, so I appreciate the suggestion. However, I found another route that worked better for me as I'm working on a commercial product and cannot incoporate the Checker Framework (its GPL license is incompatible with ours).
In my solution, I use my own "standard" java annotation processor to build a listing of all the methods annotated with @Unsafe
.
Then, I developed a javac plugin. The Plugin API makes it easy to find every invocation of any method in the AST. By using some tips from this question, I was able to determine the class and method name from the MethodInvocationTree AST node. Then I compare those method invocations with the earlier "listing" I created containing methods annotated with @Unsafe
and issue warnings where required.
Here is an abbreviated version of my javac Plugin.
import javax.lang.model.element.Element;
import javax.lang.model.element.TypeElement;
import com.sun.source.tree.MethodInvocationTree;
import com.sun.source.util.JavacTask;
import com.sun.source.util.Plugin;
import com.sun.source.util.TaskEvent;
import com.sun.source.util.TaskEvent.Kind;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.TreeInfo;
import com.sun.source.util.TaskListener;
import com.sun.source.util.TreeScanner;
public class UnsafePlugin implements Plugin, TaskListener {
@Override
public String getName() {
return "UnsafePlugin";
}
@Override
public void init(JavacTask task, String... args) {
task.addTaskListener(this);
}
@Override
public void finished(TaskEvent taskEvt) {
if (taskEvt.getKind() == Kind.ANALYZE) {
taskEvt.getCompilationUnit().accept(new TreeScanner<Void, Void>() {
@Override
public Void visitMethodInvocation(MethodInvocationTree methodInv, Void v) {
Element method = TreeInfo.symbol((JCTree) methodInv.getMethodSelect());
TypeElement invokedClass = (TypeElement) method.getEnclosingElement();
String className = invokedClass.toString();
String methodName = methodInv.getMethodSelect().toString().replaceAll(".*\\.", "");
System.out.println("Method Invocation: " + className + " : " + methodName);
return super.visitMethodInvocation(methodInv, v);
}
}, null);
}
}
@Override
public void started(TaskEvent taskEvt) {
}
}
Note - in order for the javac plugin to be invoked, you must provide arguments on the command line:
javac -processorpath build/unsafe-plugin.jar -Xplugin:UnsafePlugin
Also, you must have a file META-INF/services/com.sun.source.util.Plugin
in unsafe-plugin.jar containing the fully qualified name of the plugin:
com.unsafetest.javac.UnsafePlugin
Upvotes: 5
Reputation: 8117
Yes, this is possible using annotation processing.
One complication is that a standard annotation processor does not descend into method bodies (it only examines the method declaration). You want an annotation processor that examines every line of code.
The Checker Framework is designed to build such annotation processors. You just need to define a callback that, given a method call and issues a javac warning if the call is not acceptable. (In your case, it's simply whether the method's declaration has an @Unsafe
annotation.) The Checker Framework runs that callback on every method call in the program.
Upvotes: 3