Reputation: 359
I want to rank a set of sellers. Each seller is defined by parameters var1,var2,var3,var4...var20. I want to score each of the sellers.
Currently I am calculating score by assigning weights on these parameters(Say 10% to var1, 20 % to var2 and so on), and these weights are determined based on my gut feeling.
my score equation looks like
score = w1* var1 +w2* var2+...+w20*var20
score = 0.1*var1+ 0.5 *var2 + .05*var3+........+0.0001*var20
My score equation could also look like
score = w1^2* var1 +w2* var2+...+w20^5*var20
where var1,var2,..var20 are normalized.
Which equation should I use? What are the methods to scientifically determine, what weights to assign?
I want to optimize these weights to revamp the scoring mechanism using some data oriented approach to achieve a more relevant score.
I have following features for sellers
1] Order fulfillment rates [numeric]
2] Order cancel rate [numeric]
3] User rating [1-5] { 1-2 : Worst, 3: Average , 5: Good} [categorical]
4] Time taken to confirm the order. (shorter the time taken better is the seller) [numeric]
5] Price competitiveness
Are there better algorithms/approaches to solve this problem? calculating score? i.e I linearly added the various features, I want to know better approach to build the ranking system?
How to come with the values for the weights?
Apart from using above features, few more that I can think of are ratio of positive to negative reviews, rate of damaged goods etc. How will these fit into my Score equation?
Upvotes: 3
Views: 2431
Reputation: 1675
Unfortunately stackoverflow doesn't have latex so images will have to do:
Also as a disclaimer, I don't think this is a concise answer but your question is quite broad. This has not been tested but is an approach I would most likely take given a similar problem.
As a possible direction to go, below is the multivariate gaussian
. The idea would be that each parameter is in its own dimension and therefore could be weighted by importance. Example:
Sigma = [1,0,0;0,2,0;0,0,3] for a vector [x1,x2,x3] the x1 would have the greatest importance.
Sigma
takes care of scaling in each dimension. To achieve this simply add the weights to a diagonal matrix nxn to the diagonal elements. You are not really concerned with the cross terms.Mu
is the average of all logs in your data for your sellers and is a vector.x
is the mean of every category for a particular seller and is as a vector x = {x1,x2,x3...,xn}
. This is a continuously updated value as more data are collected.After that setup the evaluation of the function f_x
can be played with to give the desired results. This is a probability density function, but its utility is not restricted to stats.
Upvotes: 2