Reputation: 3842
Here is my question:
I plot 7 variable's coefficient using sns.clustermap()
label='big
==> no effectMy code:
ds = pd.read_csv("xxxx.csv")
corr = ds.corr().mul(100).astype(int)
cmap = sns.diverging_palette(h_neg=210, h_pos=350, s=90, l=30, as_cmap=True)
sns.clustermap(data=corr_s, annot=True, fmt='d',cmap = "Blues",annot_kws={"size": 16},)
Upvotes: 45
Views: 138761
Reputation: 813
Or just use the set_xticklabels:
g = sns.clustermap(data=corr_s, annot=True, fmt='d',cmap = "Blues")
g.ax_heatmap.set_xticklabels(g.ax_heatmap.get_xmajorticklabels(), fontsize = 16)
To get different colors for the ticklabels:
import matplotlib.cm as cm
colors = cm.rainbow(np.linspace(0, 1, corr_s.shape[0]))
for i, ticklabel in enumerate(g.ax_heatmap.xaxis.get_majorticklabels()):
ticklabel.set_color(colors[i])
Upvotes: 37
Reputation: 6554
Consider calling sns.set(font_scale=1.4)
before plotting your data. This will scale all fonts in your legend and on the axes.
To this,
Of course, adjust the scaling to whatever you feel is a good setting.
Code:
sns.set(font_scale=1.4)
cmap = sns.diverging_palette(h_neg=210, h_pos=350, s=90, l=30, as_cmap=True)
sns.clustermap(data=corr, annot=True, fmt='d', cmap="Blues", annot_kws={"size": 16})
Upvotes: 88