Reputation: 24322
I'm implementing unit tests for a family of functions that all share a number of invariants. For example, calling the function with two matrices produce a matrix of known shape.
I would like to write unit tests to test the entire family of functions for this property, without having to write an individual test case for each function (particularly since more functions might be added later).
One way to do this would be to iterate over a list of these functions:
import unittest
import numpy
from somewhere import the_functions
from somewhere.else import TheClass
class Test_the_functions(unittest.TestCase):
def setUp(self):
self.matrix1 = numpy.ones((5,10))
self.matrix2 = numpy.identity(5)
def testOutputShape(unittest.TestCase):
"""Output of functions be of a certain shape"""
for function in all_functions:
output = function(self.matrix1, self.matrix2)
fail_message = "%s produces output of the wrong shape" % str(function)
self.assertEqual(self.matrix1.shape, output.shape, fail_message)
if __name__ == "__main__":
unittest.main()
I got the idea for this from Dive Into Python. There, it's not a list of functions being tested but a list of known input-output pairs. The problem with this approach is that if any element of the list fails the test, the later elements don't get tested.
I looked at subclassing unittest.TestCase and somehow providing the specific function to test as an argument, but as far as I can tell that prevents us from using unittest.main() because there would be no way to pass the argument to the testcase.
I also looked at dynamically attaching "testSomething" functions to the testcase, by using setattr with a lamdba, but the testcase did not recognize them.
How can I rewrite this so it remains trivial to expand the list of tests, while still ensuring every test is run?
Upvotes: 15
Views: 8450
Reputation: 123030
If you're already using nose (and some of your comments suggest you are), just use Test Generators, which are the most straightforward way to implement parametric tests I've come across:
For example:
from binary_search import search1 as search
def test_binary_search():
data = (
(-1, 3, []),
(-1, 3, [1]),
(0, 1, [1]),
(0, 1, [1, 3, 5]),
(1, 3, [1, 3, 5]),
(2, 5, [1, 3, 5]),
(-1, 0, [1, 3, 5]),
(-1, 2, [1, 3, 5]),
(-1, 4, [1, 3, 5]),
(-1, 6, [1, 3, 5]),
(0, 1, [1, 3, 5, 7]),
(1, 3, [1, 3, 5, 7]),
(2, 5, [1, 3, 5, 7]),
(3, 7, [1, 3, 5, 7]),
(-1, 0, [1, 3, 5, 7]),
(-1, 2, [1, 3, 5, 7]),
(-1, 4, [1, 3, 5, 7]),
(-1, 6, [1, 3, 5, 7]),
(-1, 8, [1, 3, 5, 7]),
)
for result, n, ns in data:
yield check_binary_search, result, n, ns
def check_binary_search(expected, n, ns):
actual = search(n, ns)
assert expected == actual
Produces:
$ nosetests -d
...................
----------------------------------------------------------------------
Ran 19 tests in 0.009s
OK
Upvotes: 5
Reputation: 429
I've read the metaclass example, and I liked it, but it was missing two things:
I wrote this more complete example, which is data-driven, and in which the test function is itself unit-tested.
import unittest
TEST_DATA = (
(0, 1),
(1, 2),
(2, 3),
(3, 5), # This intentionally written to fail
)
class Foo(object):
def f(self, n):
return n + 1
class FooTestBase(object):
"""Base class, defines a function which performs assertions.
It defines a value-driven check, which is written as a typical function, and
can be tested.
"""
def setUp(self):
self.obj = Foo()
def value_driven_test(self, number, expected):
self.assertEquals(expected, self.obj.f(number))
class FooTestBaseTest(unittest.TestCase):
"""FooTestBase has a potentially complicated, data-driven function.
It needs to be tested.
"""
class FooTestExample(FooTestBase, unittest.TestCase):
def runTest(self):
return self.value_driven_test
def test_value_driven_test_pass(self):
test_base = self.FooTestExample()
test_base.setUp()
test_base.value_driven_test(1, 2)
def test_value_driven_test_fail(self):
test_base = self.FooTestExample()
test_base.setUp()
self.assertRaises(
AssertionError,
test_base.value_driven_test, 1, 3)
class DynamicTestMethodGenerator(type):
"""Class responsible for generating dynamic test functions.
It only wraps parameters for specific calls of value_driven_test. It could
be called a form of currying.
"""
def __new__(cls, name, bases, dct):
def generate_test_method(number, expected):
def test_method(self):
self.value_driven_test(number, expected)
return test_method
for number, expected in TEST_DATA:
method_name = "testNumbers_%s_and_%s" % (number, expected)
dct[method_name] = generate_test_method(number, expected)
return type.__new__(cls, name, bases, dct)
class FooUnitTest(FooTestBase, unittest.TestCase):
"""Combines generated and hand-written functions."""
__metaclass__ = DynamicTestMethodGenerator
if __name__ == '__main__':
unittest.main()
When running the above example, if there's a bug in the code (or wrong test data), the error message will contain function name, which should help in debugging.
.....F
======================================================================
FAIL: testNumbers_3_and_5 (__main__.FooUnitTest)
----------------------------------------------------------------------
Traceback (most recent call last):
File "dyn_unittest.py", line 65, in test_method
self.value_driven_test(number, expected)
File "dyn_unittest.py", line 30, in value_driven_test
self.assertEquals(expected, self.obj.f(number))
AssertionError: 5 != 4
----------------------------------------------------------------------
Ran 6 tests in 0.002s
FAILED (failures=1)
Upvotes: 0
Reputation: 26582
You don't have to use meta classes here. A simple loop fits just fine. Take a look at the example below:
import unittest
class TestCase1(unittest.TestCase):
def check_something(self, param1):
self.assertTrue(param1)
def _add_test(name, param1):
def test_method(self):
self.check_something(param1)
setattr(TestCase1, 'test_' + name, test_method)
test_method.__name__ = 'test_' + name
for i in range(0, 3):
_add_test(str(i), False)
Once the for is executed, the TestCase1 has three test methods that are supported by both nose and unittest.
Upvotes: 6
Reputation:
The metaclass code in a previous answer has trouble with nose, because nose's wantMethod in its selector.py file is looking at a given test method's __name__
, not the attribute dict key.
To use a metaclass defined test method with nose, the method name and dictionary key must be the same, and prefixed to be detected by nose (i.e., with 'test_').
# Test class that uses a metaclass
class TCType(type):
def __new__(cls, name, bases, dct):
def generate_test_method():
def test_method(self):
pass
return test_method
dct['test_method'] = generate_test_method()
return type.__new__(cls, name, bases, dct)
class TestMetaclassed(object):
__metaclass__ = TCType
def test_one(self):
pass
def test_two(self):
pass
Upvotes: 1
Reputation: 5129
The problem with this approach is that if any element of the list fails the test, the later elements don't get tested.
If you look at it from the point of view that, if a test fails, that is critical and your entire package is invalid, then it doesn't matter that other elements won't get tested, because 'hey, you have an error to fix'.
Once that test passes, the other tests will then run.
Admittedly there is information to be gained from knowledge of which other tests are failing, and that can help with debugging, but apart from that, assume any test failure is an entire application failure.
Upvotes: -1
Reputation: 392050
Here's my favorite approach to the "family of related tests". I like explicit subclasses of a TestCase that expresses the common features.
class MyTestF1( unittest.TestCase ):
theFunction= staticmethod( f1 )
def setUp(self):
self.matrix1 = numpy.ones((5,10))
self.matrix2 = numpy.identity(5)
def testOutputShape( self ):
"""Output of functions be of a certain shape"""
output = self.theFunction(self.matrix1, self.matrix2)
fail_message = "%s produces output of the wrong shape" % (self.theFunction.__name__,)
self.assertEqual(self.matrix1.shape, output.shape, fail_message)
class TestF2( MyTestF1 ):
"""Includes ALL of TestF1 tests, plus a new test."""
theFunction= staticmethod( f2 )
def testUniqueFeature( self ):
# blah blah blah
pass
class TestF3( MyTestF1 ):
"""Includes ALL of TestF1 tests with no additional code."""
theFunction= staticmethod( f3 )
Add a function, add a subclass of MyTestF1
. Each subclass of MyTestF1 includes all of the tests in MyTestF1 with no duplicated code of any kind.
Unique features are handled in an obvious way. New methods are added to the subclass.
It's completely compatible with unittest.main()
Upvotes: 11
Reputation: 16095
Metaclasses is one option. Another option is to use a TestSuite
:
import unittest
import numpy
import funcs
# get references to functions
# only the functions and if their names start with "matrixOp"
functions_to_test = [v for k,v in funcs.__dict__ if v.func_name.startswith('matrixOp')]
# suplly an optional setup function
def setUp(self):
self.matrix1 = numpy.ones((5,10))
self.matrix2 = numpy.identity(5)
# create tests from functions directly and store those TestCases in a TestSuite
test_suite = unittest.TestSuite([unittest.FunctionTestCase(f, setUp=setUp) for f in functions_to_test])
if __name__ == "__main__":
unittest.main()
Haven't tested. But it should work fine.
Upvotes: 0
Reputation: 91050
You could use a metaclass to dynamically insert the tests. This works fine for me:
import unittest
class UnderTest(object):
def f1(self, i):
return i + 1
def f2(self, i):
return i + 2
class TestMeta(type):
def __new__(cls, name, bases, attrs):
funcs = [t for t in dir(UnderTest) if t[0] == 'f']
def doTest(t):
def f(slf):
ut=UnderTest()
getattr(ut, t)(3)
return f
for f in funcs:
attrs['test_gen_' + f] = doTest(f)
return type.__new__(cls, name, bases, attrs)
class T(unittest.TestCase):
__metaclass__ = TestMeta
def testOne(self):
self.assertTrue(True)
if __name__ == '__main__':
unittest.main()
Upvotes: 5