Reputation: 6009
I'm trying to write some code in a functional paradigm for practice. There is one case I'm having some problems wrapping my head around. I am trying to create an array of 5 unique integers from 1, 100. I have been able to solve this without using functional programming:
let uniqueArray = [];
while (uniqueArray.length< 5) {
const newNumber = getRandom1to100();
if (uniqueArray.indexOf(newNumber) < 0) {
uniqueArray.push(newNumber)
}
}
I have access to lodash
so I can use that. I was thinking along the lines of:
const uniqueArray = [
getRandom1to100(),
getRandom1to100(),
getRandom1to100(),
getRandom1to100(),
getRandom1to100()
].map((currentVal, index, array) => {
return array.indexOf(currentVal) > -1 ? getRandom1to100 : currentVal;
});
But this obviously wouldn't work because it will always return true because the index is going to be in the array (with more work I could remove that defect) but more importantly it doesn't check for a second time that all values are unique. However, I'm not quite sure how to functionaly mimic a while loop.
Upvotes: 3
Views: 481
Reputation: 51
This is a very good question. It's actually quite common. It's even sometimes asked as an interview question.
Here's my solution to generating 5 integers from 0 to 100.
let rec take lst n =
if n = 0 then []
else
match lst with
| [] -> []
| x :: xs -> x :: take xs (n-1)
let shuffle d =
let nd = List.map (fun c -> (Random.bits (), c)) d in
let sond = List.sort compare nd in
List.map snd sond
let rec range a b =
if a >= b then []
else a :: range (a+1) b;;
let _ =
print_endline
(String.concat "\t" ("5 random integers:" :: List.map string_of_int (take (shuffle (range 0 101)) 5)))
Upvotes: 0
Reputation: 52008
Here is a stream-based Python approach.
Python's version of a lazy stream is a generator. They can be produced in various ways, including by something which looks like a function definition but uses the key word yield
rather than return
. For example:
import random
def randNums(a,b):
while True:
yield random.randint(a,b)
Normally generators are used in for-loops but this last generator has an infinite loop hence would hang if you try to iterate over it. Instead, you can use the built-in function next()
to get the next item in the string. It is convenient to write a function which works something like Haskell's take
:
def take(n,stream):
items = []
for i in range(n):
try:
items.append(next(stream))
except StopIteration:
return items
return items
In Python StopIteration
is raised when a generator is exhausted. If this happens before n
items, this code just returns however much has been generated, so perhaps I should call it takeAtMost
. If you ditch the error-handling then it will crash if there are not enough items -- which maybe you want. In any event, this is used like:
>>> s = randNums(1,10)
>>> take(5,s)
[6, 6, 8, 7, 2]
of course, this allows for repeats.
To make things unique (and to do so in a functional way) we can write a function which takes a stream as input and returns a stream consisting of unique items as output:
def unique(stream):
def f(s):
items = set()
while True:
try:
x = next(s)
if not x in items:
items.add(x)
yield x
except StopIteration:
raise StopIteration
return f(stream)
this creates an stream in a closure that contains a set which can keep track of items that have been seen, only yielding items which are unique. Here I am passing on any StopIteration
exception. If the underlying generator has no more elements then there are no more unique elements. I am not 100% sure if I need to explicitly pass on the exception -- (it might happen automatically) but it seems clean to do so.
Used like this:
>>> take(5,unique(randNums(1,10)))
[7, 2, 5, 1, 6]
take(10,unique(randNums(1,10)))
will yield a random permutation of 1-10. take(11,unique(randNums(1,10)))
will never terminate.
Upvotes: 1
Reputation:
Here's an example in OCaml, the key point is that you use accumulators and recursion.
let make () =
Random.self_init ();
let rec make_list prev current max accum =
let number = Random.int 100 in
if current = max then accum
else begin
if number <> prev
then (number + prev) :: make_list number (current + 1) max accum
else accum
end
in
make_list 0 0 5 [] |> Array.of_list
This won't guarantee that the array will be unique, since its only checking by the previous. You could fix that by hiding a hashtable in the closure between make
and make_list
and doing a constant time lookup.
Upvotes: 1
Reputation: 651
How's this:
const addUnique = (ar) => {
const el = getRandom1to100();
return ar.includes(el) ? ar : ar.concat([el])
}
const uniqueArray = (numberOfElements, baseArray) => {
if (numberOfElements < baseArray.length) throw 'invalid input'
return baseArray.length === numberOfElements ? baseArray : uniqueArray(numberOfElements, addUnique(baseArray))
}
const myArray = uniqueArray(5, [])
Upvotes: -1