Reputation: 830
I have a large dataframe with random columns which contain NA values. It looks like this:
2002-06-26 2002-06-27 2002-06-28 2002-07-01 2002-07-02 2002-07-03 2002-07-05
1 US1718711062 NA BMG4388N1065 US0116591092 NA AN8068571086 GB00BYMT0J19
2 US9837721045 NA US0025671050 US03662Q1058 NA BMG3223R1088 US0097281069
3 NA US00847J1051 US06652V2088 NA BMG4388N1065 US0305061097
4 NA US04351G1013 US1046741062 NA BMG7496G1033 US03836W1036
5 NA US2925621052 US1431301027 NA CA88157K1012 US06652V2088
6 NA US34988V1061 US1897541041 NA CH0044328745 US1547604090
7 NA US3596941068 US2053631048 NA GB00B5BT0K07 US1778351056
8 NA US4180561072 US2567461080 NA IE00B5LRLL25 US1999081045
9 NA US4198791018 US2925621052 NA IE00B8KQN827 US3498531017
10 NA US45071R1095 US3989051095 NA IE00BGH1M568 US42222N1037
I need a code which identifies and fills out the NA columns with the contents of the previous column. So for example column "2002-06-27" should contain "US1718711062" and "US9837721045". The NA columns are at irregular intervals.
Columns are also of random length some only containing one element so I think the best way to identify columns with no values is to look at the first row like so:
row.has.na <- which(is.na(data[1,]))
[1] 2 5
Upvotes: 0
Views: 86
Reputation: 24074
To complete my comment: as you have already computed row.has.na
, the vector of indices for the NA
column, here is a way to use it and get what you need:
data[, row.has.na] <- data[, row.has.na - 1]
Upvotes: 3
Reputation: 3235
This should work. Note that this also works if two (or more) NA columns are next to each other. Maybe there is a way around the while-loop, but...
# Create some data
data <- data.frame(col1 = 1:10, col2 = NA, col3 = 10:1, col4 = NA, col5 = NA, col6 = NA)
# Find which columns contain NA in the first row
col_NA <- which(is.na(data[1,]))
# Select the previous columns
col_replace <- col_NA - 1
# Check if any NA columns are next to each other and fix it:
while(any(diff(col_replace) == 1)){
ind <- which(diff(col_replace) == 1) + 1
col_replace[ind] <- col_replace[ind] - 1
}
# Replace the NA columns with the previous columns
data[,col_NA] <- data[,col_replace]
col1 col2 col3 col4 col5 col6
1 1 1 10 10 10 10
2 2 2 9 9 9 9
3 3 3 8 8 8 8
4 4 4 7 7 7 7
5 5 5 6 6 6 6
6 6 6 5 5 5 5
7 7 7 4 4 4 4
8 8 8 3 3 3 3
9 9 9 2 2 2 2
10 10 10 1 1 1 1
Upvotes: 2