Reputation: 3
I'm trying to write a streamlined function in R to compare multiple columns in a matrix. What is the optimal way to do this in R? Most likely using apply.
I have seen this question crop up a number of times but with some conflicting views on the optimal way to write this.
for ( j in 2:ncol(net) )
{
for ( i in 1:nrow(net) )
{
net[i,j] <- min(net[i,j],net[i,1])
}
}
The end output of a matrix with the following
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 2 3
[3,] 3 2 3
would be
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 2 3
Upvotes: 0
Views: 145
Reputation: 43354
Here's a version with sapply
and ifelse
(which is vectorised, woo), which is likely faster, and deals with NA
values in a predictable way:
sapply(X = seq(to = ncol(x = net)), FUN = function(j){
net[,j] <- ifelse(test = net[,1] < net[,j], yes = net[,1], no = net[,j])
})
Some sample data
net <- head(airquality)
net
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
results in:
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 41 41 7.4 41 5 1
[2,] 36 36 8.0 36 5 2
[3,] 12 12 12.0 12 5 3
[4,] 18 18 11.5 18 5 4
[5,] NA NA NA NA NA NA
[6,] 28 NA 14.9 28 5 6
Note: I specified pretty much all argument names, as I've found this makes most code faster. If you don't care about time, a simpler [possibly more readable] version:
sapply(seq(ncol(net)), function(j){
net[,j] <- ifelse(net[,1] < net[,j], net[,1], net[,j])
})
Upvotes: 0
Reputation: 887901
We can unlist
the columns the "net" except the first column (net[-1]
), replicate the first column as the same length as the unlist
ed columns, and use pmin
to get the minimum value of corresponding elements of the vectors
.
pmin(unlist(net[-1], use.names=FALSE), net[,1][row(net[-1])])
#[1] 2 2 7 5 2 2 2 6 5 3 2 1 0 5 1
If we need a lapply
solution,
unlist(lapply(net[-1], function(x) pmin(x, net[,1])), use.names=FALSE)
Using the OP's for
loop
for ( i in 2:ncol(net) ){
for ( j in 1:nrow(net) ){
print(min(net[j,i],net[j,1]))
}
}
#[1] 2
#[1] 2
#[1] 7
#[1] 5
#[1] 2
#[1] 2
#[1] 2
#[1] 6
#[1] 5
#[1] 3
#[1] 2
#[1] 1
#[1] 0
#[1] 5
#[1] 1
As the OP mentioned that this is not giving the expected output, trying with new data showed in the OP's post
net <- cbind(1:3, 2, 3)
cbind(net[,1],pmin(unlist(net[,-1], use.names=FALSE),
net[,1][row(net[,-1])]))
# [,1] [,2] [,3]
#[1,] 1 1 1
#[2,] 2 2 2
#[3,] 3 2 3
set.seed(24)
net <- as.data.frame(matrix(sample(0:9, 4*5, replace=TRUE), ncol=4))
Upvotes: 1
Reputation: 12569
If there are no NA
s you can do
net <- head(airquality, 4) # example data
for (j in 1:nrow(net)) net[j, net[j,]>net[j,1]] <- net[j,1]
net
Upvotes: 0