Reputation: 20125
I want a function
int rounded_division(const int a, const int b) {
return round(1.0 * a/b);
}
So we have, for example,
rounded_division(3, 2) // = 2
rounded_division(2, 2) // = 1
rounded_division(1, 2) // = 1
rounded_division(0, 2) // = 0
rounded_division(-1, 2) // = -1
rounded_division(-2, 2) // = -1
rounded_division(-3, -2) // = 2
Or in code, where a
and b
are 32 bit signed integers:
int rounded_division(const int a, const int b) {
return ((a < 0) ^ (b < 0)) ? ((a - b / 2) / b) : ((a + b / 2) / b);
}
And here comes the tricky part: How to implement this guy efficiently (not using larger 64 bit values) and without a logical operators such as ?:
, &&
, ...? Is it possible at all?
The reason why I am wondering of avoiding logical operators, because the processor I have to implement this function for, has no conditional instructions (more about missing conditional instructions on ARM.).
Upvotes: 4
Views: 974
Reputation: 76
Code that I came up with for use on ARM M0 (no floating point, slow divide). It only uses one divide instruction and no conditionals, but will overflow if numerator + (denominator/2) > INT_MAX.
Cycle count on ARM M0 = 7 cycles + the divide (M0 has no divide instruction, so it is toolchain dependant).
int32_t Int32_SignOf(int32_t val)
{
return (+1 | (val >> 31)); // if v < 0 then -1, else +1
}
uint32_t Int32_Abs(int32_t val)
{
int32_t tmp = val ^ (val >> 31);
return (tmp - (val >> 31));
// the following code looks like it should be faster, using subexpression elimination
// except on arm a bitshift is free when performed with another operation,
// so it would actually end up being slower
// tmp = val >> 31;
// dst = val ^ (tmp);
// dst -= tmp;
// return dst;
}
int32_t Int32_DivRound(int32_t numerator, int32_t denominator)
{
// use the absolute (unsigned) demominator in the fudge value
// as the divide by 2 then becomes a bitshift
int32_t sign_num = Int32_SignOf(numerator);
uint32_t abs_denom = Int32_Abs(denominator);
return (numerator + sign_num * ((int32_t)(abs_denom / 2u))) / denominator;
}
Upvotes: 1
Reputation: 153303
a/b + a%b/(b/2 + b%2)
works quite well - not failed in billion+ test cases. It meets all OP's goals: No overflow, no long long
, no branching, works over entire range of int
when a/b
is defined.
No 32-bit dependency. If using C99 or later, no implementation behavior restrictions.
int rounded_division(int a, int b) {
int q = a / b;
int r = a % b;
return q + r/(b/2 + b%2);
}
This works with 2's complement, 1s' complement and sign-magnitude as all operations are math ones.
Upvotes: 9
Reputation: 10655
Let me give my contribution:
What about:
int rounded_division(const int a, const int b) {
return a/b + (2*(a%b))/b;
}
No branch, no logical operators, only mathematical operators. But it could fail if b is great than INT_MAX/2 or less than INT_MIN/2.
But if 64 bits are allowed to compute 32 bits rounds. It will not fail
int rounded_division(const int a, const int b) {
return a/b + (2LL*(a%b))/b;
}
Upvotes: 1
Reputation: 1135
How about this:
int rounded_division(const int a, const int b) {
return (a + b/2 + b * ((a^b) >> 31))/b;
}
(a ^ b) >> 31
should evaluate to -1
if a
and b
have different signs and 0
otherwise, assuming int
has 32 bits and the leftmost is the sign bit.
EDIT
As pointed out by @chux in his comments this method is wrong due to integer division. This new version evaluates the same as OP's example, but contains a bit more operations.
int rounded_division(const int a, const int b) {
return (a + b * (1 + 2 * ((a^b) >> 31)) / 2)/b;
}
This version still however does not take into account the overflow problem.
Upvotes: 3
Reputation: 153303
The following rounded_division_test1()
meets OP's requirement of no branching - if one counts sign(int a)
, nabs(int a)
, and cmp_le(int a, int b)
as non-branching. See here for ideas of how to do sign()
without compare operators. These helper functions could be rolled into rounded_division_test1()
without explicit calls.
The code demonstrates the correct functionality and is useful for testing various answers. When a/b
is defined, this answer does not overflow.
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
int nabs(int a) {
return (a < 0) * a - (a >= 0) * a;
}
int sign(int a) {
return (a > 0) - (a < 0);
}
int cmp_le(int a, int b) {
return (a <= b);
}
int rounded_division_test1(int a, int b) {
int q = a / b;
int r = a % b;
int flag = cmp_le(nabs(r), (nabs(b) / 2 + nabs(b % 2)));
return q + flag * sign(b) * sign(r);
}
// Alternative that uses long long
int rounded_division_test1LL(int a, int b) {
int c = (a^b)>>31;
return (a + (c*2 + 1)*1LL*b/2)/b;
}
// Reference code
int rounded_division(int a, int b) {
return round(1.0*a/b);
}
int test(int a, int b) {
int q0 = rounded_division(a, b);
//int q1 = function(a,b);
int q1 = rounded_division_test1(a, b);
if (q0 != q1) {
printf("%d %d --> %d %d\n", a, b, q0, q1);
fflush(stdout);
}
return q0 != q1;
}
void tests(void) {
int err = 0;
int const a[] = { INT_MIN, INT_MIN + 1, INT_MIN + 1, -3, -2, -1, 0, 1, 2, 3,
INT_MAX - 1, INT_MAX };
for (unsigned i = 0; i < sizeof a / sizeof a[0]; i++) {
for (unsigned j = 0; j < sizeof a / sizeof a[0]; j++) {
if (a[j] == 0) continue;
if (a[i] == INT_MIN && a[j] == -1) continue;
err += test(a[i], a[j]);
}
}
printf("Err %d\n", err);
}
int main(void) {
tests();
return 0;
}
Upvotes: 1
Reputation: 26
since the function seems to be symmetric how about sign(a/b)*floor(abs(a/b)+0.5)
Upvotes: 0
Reputation: 11
This is a rough approach that you may use. Using a mask to apply something if the operation a*b < 0.
Please note that I did not test this appropriately.
int function(int a, int b){
int tmp = float(a)/b + 0.5;
int mask = (a*b) >> 31; // shift sign bit to set rest of the bits
return tmp - (1 & mask);//minus one if a*b was < 0
}
Upvotes: 1
Reputation: 70883
What about
...
return ((a + (a*b)/abs(a*b) * b / 2) / b);
}
Without overflow:
...
return ((a + ((a/abs(a))*(b/abs(b))) * b / 2) / b);
}
Upvotes: 1