Reputation: 875
I have two matrices of features, that have different number of rows. Suppose matrix A has more rows than matrix B. The columns of matrices includes ID1, ID2, Time_slice, feature value. Since for some Time_slice there is no feature value in B, the number of rows in B is less than A. I require to find which rows are missed in B. Then add rows to B with related ID1, ID2 values, and zero for the feature.
ID1 ID2 Time_slice Feature
A= array([[ 100, 1., 0., 1.5],
[ 100, 1., 1., 3.7],
[ 100, 2., 0., 1.2],
[ 100, 2., 1., 1.8],
[ 100, 2., 2., 2.9],
[ 101, 3., 0., 1.5],
[ 101, 3., 1., 3.7],
[ 101, 4., 0., 1.2],
[ 101, 4., 1., 1.8],
[ 101, 4., 2., 2.9]])
B= array([[ 100, 1., 0., 1.25],
[ 100, 1., 1., 3.37],
[ 100, 2., 0., 1.42],
[ 100, 2., 1., 1.68]])
Output should be as follow:
[[ 100, 1., 0., 1.25],
[ 100, 1., 1., 3.37],
[ 100, 2., 0., 1.42],
[ 100, 2., 1., 1.68],
[ 100, 2., 2., 0 ],
[ 101, 3., 0., 0],
[ 101, 3., 1., 0],
[ 101, 4., 0., 0],
[ 101, 4., 1., 0],
[ 101, 4., 2., 0]])
Upvotes: 0
Views: 634
Reputation: 880259
It appears (from the desired output) that a row in A is thought to match a row
in B if the first three columns are equal. Your problem would be in large part solved if we could identify which rows of A
match rows of B
.
If identifying matches simply depended on values from a single column, then we could use np.in1d
. For example, if [0, 1, 2, 5 ,0]
were values in A
and [0, 2]
were values in B
, then
In [39]: np.in1d([0, 1, 2, 5, 0], [0, 2])
Out[39]: array([ True, False, True, False, True], dtype=bool)
shows which rows of A
match rows of B
.
There is (currently) no higher-dimensional generalization of this function in NumPy.
There is a trick, however, which can be used to view multiple columns of a 2D array as a single column of byte values -- thus turning a 2D array into a 1D array. We can then apply np.in1d
to this 1D array. The trick, which I learned from Jaime, is here encapsulated in the function, asvoid
:
import numpy as np
def asvoid(arr):
"""
View the array as dtype np.void (bytes).
This views the last axis of ND-arrays as np.void (bytes) so
comparisons can be performed on the entire row.
https://stackoverflow.com/a/16840350/190597 (Jaime, 2013-05)
Some caveats:
- `asvoid` will work for integer dtypes, but be careful if using asvoid on float
dtypes, since float zeros may compare UNEQUALLY:
>>> asvoid([-0.]) == asvoid([0.])
array([False], dtype=bool)
- `asvoid` works best on contiguous arrays. If the input is not contiguous,
`asvoid` will copy the array to make it contiguous, which will slow down the
performance.
"""
arr = np.ascontiguousarray(arr)
return arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1])))
A = np.array([[ 100, 1., 0., 1.5],
[ 100, 1., 1., 3.7],
[ 100, 2., 0., 1.2],
[ 100, 2., 1., 1.8],
[ 100, 2., 2., 2.9],
[ 101, 3., 0., 1.5],
[ 101, 3., 1., 3.7],
[ 101, 4., 0., 1.2],
[ 101, 4., 1., 1.8],
[ 101, 4., 2., 2.9]])
B = np.array([[ 100, 1., 0., 1.25],
[ 100, 1., 1., 3.37],
[ 100, 2., 0., 1.42],
[ 100, 2., 1., 1.68]])
mask = np.in1d(asvoid(A[:, :3]), asvoid(B[:, :3]))
result = A[~mask]
result[:, -1] = 0
result = np.row_stack([B, result])
print(result)
yields
[[ 100. 1. 0. 1.25]
[ 100. 1. 1. 3.37]
[ 100. 2. 0. 1.42]
[ 100. 2. 1. 1.68]
[ 100. 2. 2. 0. ]
[ 101. 3. 0. 0. ]
[ 101. 3. 1. 0. ]
[ 101. 4. 0. 0. ]
[ 101. 4. 1. 0. ]
[ 101. 4. 2. 0. ]]
Upvotes: 2
Reputation: 378
You can try something like:
import numpy as np
A = np.array([[ 100, 1., 0., 1.5],
[ 100, 1., 1., 3.7],
[ 100, 2., 0., 1.2],
[ 100, 2., 1., 1.8],
[ 100, 2., 2., 2.9],
[ 101, 3., 0., 1.5],
[ 101, 3., 1., 3.7],
[ 101, 4., 0., 1.2],
[ 101, 4., 1., 1.8],
[ 101, 4., 2., 2.9]])
B = np.array([[ 100, 1., 0., 1.25],
[ 100, 1., 1., 3.37],
[ 100, 2., 0., 1.42],
[ 100, 2., 1., 1.68]])
listB = B.tolist()
for rowA in A:
if rowA.tolist not in listB:
B = np.append(B, [[rowA[0], rowA[1], rowA[2], 0]], axis=0)
print B
Upvotes: 1