James
James

Reputation: 424

How to insert a second header row in pandas df for csv write

I have a very large pandas df I am writeing out to csv. I need to add a second header row containing the data types. The below code works but produces a third unexpected empty row in the CSV:

#! /usr/bin/env python
import pandas as pd

df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))

# get count of header columns, add REAL for each one
types_header_for_insert = list(df.columns.values)
for idx, val in enumerate(types_header_for_insert):
    types_header_for_insert[idx] = 'REAL'

# count number of index columns, then add STRING for each one
index_count = len(df.index.names)
for idx in range(0, index_count):
    df.reset_index(level=0, inplace=True)
    types_header_for_insert.insert(0, 'STRING')

# insert the new types column
df.columns = pd.MultiIndex.from_tuples(zip(df.columns, types_header_for_insert))

print df.columns.values

df.to_csv("./test.csv", index=False)

output:

index,A,B
STRING,REAL,REAL
,,
0,1,2
1,3,4

How can I get rid of this extra blank row? Where does it come from?

Upvotes: 3

Views: 8719

Answers (3)

James
James

Reputation: 424

I used a work around in the end (a) write the original headers to csv (b) replace the headers with the second header line and append whole df to first file:

# write the header to the file only
pd.DataFrame(data=[df.columns]).to_csv("outfile.csv", header=False, index=False)

# now replace header
types_header_for_insert = list(df.columns.values)
for idx, val in enumerate(df.columns.values):
    if df[val].dtype == 'float64':
        types_header_for_insert[idx] = 'REAL'

    elif self.grouped[val].dtype == 'int64':
        types_header_for_insert[idx] = 'INTEGER'

    else:
        types_header_for_insert[idx] = 'STRING'

df.columns = types_header_for_insert

# append the whole df with new header
df.to_csv("outfile.csv", mode="a", float_format='%.3f', index=False)

Upvotes: 3

jezrael
jezrael

Reputation: 863701

I think it is bug, see opened issue 6618.

Maybe help little trick - add types_header_for_insert before first row to data:

#! /usr/bin/env python
import pandas as pd

df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))

# get count of header columns, add REAL for each one
types_header_for_insert = list(df.columns.values)
for idx, val in enumerate(types_header_for_insert):
    types_header_for_insert[idx] = 'REAL'

# count number of index columns, then add STRING for each one
index_count = len(df.index.names)
for idx in range(0, index_count):
    df.reset_index(level=0, inplace=True)
    types_header_for_insert.insert(0, 'STRING')

# insert the new types column
#df.columns = pd.MultiIndex.from_tuples(zip(df.columns, types_header_for_insert))

#set new value to dataframe
df.loc[-1]  = types_header_for_insert

#sort index 
df = df.sort_index()
print df
#     index     A     B
#-1  STRING  REAL  REAL
# 0       0     1     2
# 1       1     3     4

print df.to_csv(index=False)
#index,A,B
#STRING,REAL,REAL
#0,1,2
#1,3,4

EDIT

In large df you can use append:

#empty df with column from df
df1 = pd.DataFrame(columns = df.columns)
#create series from types_header_for_insert
s = pd.Series(types_header_for_insert, index=df.columns)
print s
index    STRING
A          REAL
B          REAL
dtype: object

df1 = df1.append(s, ignore_index=True).append(df, ignore_index=True)
print df1
    index     A     B
0  STRING  REAL  REAL
1       0     1     2
2       1     3     4

print df1.to_csv(index=False)
index,A,B
STRING,REAL,REAL
0,1,2
1,3,4

Upvotes: 2

Parfait
Parfait

Reputation: 107767

In Python 3, the MultiIndex.from_tuples() fails with object of type 'zip' has no len(). However, wrapping the zip in list() works with no blank row. Consider trying it in Python 2:

df.columns = pd.MultiIndex.from_tuples(list(zip(df.columns, types_header_for_insert)))

print df.columns.values

df.to_csv("./test.csv", index=False)

#   index    A    B
#  STRING REAL REAL
#       0    1    2
#       1    3    4

Alternatively, to circumnavigate zip with list comprehension:

data = [df.columns, types_header_for_insert]
newcolumns = [tuple(i[j] for i in data) for j in range(min(len(l) for l in data))]
df.columns = pd.MultiIndex.from_tuples(newcolumns)

print df.columns.values

df.to_csv("./test.csv", index=False)

#   index    A    B
#  STRING REAL REAL
#       0    1    2
#       1    3    4

Upvotes: 0

Related Questions