Reputation: 145
I have a .csv that contains contains column headers and is displayed below. I need to suppress the column labeling when I ingest the file as a data frame.
date,color,id,zip,weight,height,locale
11/25/2013,Blue,122468,1417464,3546600,254,7
When I issue the following command:
df = pd.read_csv('c:/temp1/test_csv.csv', usecols=[4,5], names = ["zip","weight"], header = 0, nrows=10)
I get:
zip weight
0 1417464 3546600
I have tried various manipulations of header=True and header=0. If I don't use header=0, then the columns will all print out on top of the rows like so:
zip weight
height locale
0 1417464 3546600
I have tried skiprows= 0 and 1 but neither removes the headers. However, the command works by skipping the line specified.
I could really use some additional insight or a solve. Thanks in advance for any assistance you could provide.
Tiberius
Upvotes: 6
Views: 13562
Reputation: 719
Using the example of @jezrael, if you want to skip the header and suppress de column labeling:
import pandas as pd
import numpy as np
import io
temp=u"""date,color,id,zip,weight,height,locale
11/25/2013,Blue,122468,1417464,3546600,254,7"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), usecols=[4,5], header=None, skiprows=1)
print df
4 5
0 3546600 254
Upvotes: 7
Reputation: 862661
I think you are right.
So you can change column names to a
and b
:
import pandas as pd
import numpy as np
import io
temp=u"""date,color,id,zip,weight,height,locale
11/25/2013,Blue,122468,1417464,3546600,254,7"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), usecols=[4,5], names = ["a","b"], header = 0 , nrows=10)
print df
a b
0 3546600 254
Now these columns have new names instead of weight
and height
.
df = pd.read_csv(io.StringIO(temp), usecols=[4,5], header = 0 , nrows=10)
print df
weight height
0 3546600 254
You can check docs read_csv (bold by me):
header : int, list of ints, default ‘infer’
Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.
Upvotes: 0
Reputation: 11591
I'm not sure I entirely understand why you want to remove the headers, but you could comment out the header line as follows as long as you don't have any other rows that begin with 'd'
:
>>> df = pd.read_csv('test.csv', usecols=[3,4], header=None, comment='d') # comments out lines beginning with 'date,color' . . .
>>> df
3 4
0 1417464 3546600
It would be better to comment out the line in the csv file with the crosshatch character (#
) and then use the same approach (again, as long as you have not commented out any other lines with a crosshatch):
>>> df = pd.read_csv('test.csv', usecols=[3,4], header=None, comment='#') # comments out lines with #
>>> df
3 4
0 1417464 3546600
Upvotes: 0