Reputation: 365
Getting right to the gist of the problem:
In how many ways can we add k positive integers to reach a sum of exactly n if each number is smaller or equal to given number m?
The problem is solvable with dynamic programming but I am stuck because I cannot find the optimal substructure or recursion for the solution.
Upvotes: 0
Views: 45
Reputation: 18927
Here's a simple function in Python 3 that should fit your description. I assume that 0 is not an acceptable value but it's a trivial change if it is.
def howMany(k, n, m):
def sub(pos, currentSum, path):
if currentSum == n and pos == k: # reached the sum, print result and increase counter by 1
print(path)
return 1
elif currentSum < n and pos < k: # still worth trying
count = 0
for i in range(1, m):
count += sub(pos + 1, currentSum + i, path+[i])
return count
else: # abort
return 0
return sub(0, 0, [])
print(howMany(3, 10, 6))
yields
[1, 4, 5]
[1, 5, 4]
[2, 3, 5]
[2, 4, 4]
[2, 5, 3]
[3, 2, 5]
[3, 3, 4]
[3, 4, 3]
[3, 5, 2]
[4, 1, 5]
[4, 2, 4]
[4, 3, 3]
[4, 4, 2]
[4, 5, 1]
[5, 1, 4]
[5, 2, 3]
[5, 3, 2]
[5, 4, 1]
18
It could be optimised but that would obfuscate the logic at this stage.
Upvotes: 1