Reputation: 101
I have a spark job written in Python which is reading data from the CSV files using DataBricks CSV reader.
I want to convert some columns from string to double by applying an udf function which actually is also changing the floating point separator.
convert_udf = F.udf(
lambda decimal_str: _to_float(decimal_separator, decimal_str),
returnType=FloatType())
for name in columns:
df = df.withColumn(name, convert_udf(df[name]))
def _to_float(decimal_separator, decimal_str):
if isinstance(decimal_str, str) or isinstance(decimal_str, unicode):
return (None if len(decimal_str.strip()) == 0
else float(decimal_str.replace(decimal_separator, '.')))
else:
return decimal_str
The Spark job is getting stuck when the udf function is called. I tried to return a fixed double value from the _to_float function without success. It looks like there is something wrong between the udf and data frame using SQL context.
Upvotes: 1
Views: 1670
Reputation: 330063
Long story short don't use Python UDFs (and UDFs in general) unless it is necessary:
For simple operations like this one just use built-in functions:
from pyspark.sql.functions import regexp_replace
decimal_separator = ","
exprs = [
regexp_replace(c, decimal_separator, ".").cast("float").alias(c)
if c in columns else c
for c in df.columns
]
df.select(*exprs)
Upvotes: 3