Reputation: 1071
I need to separately sum all positive and negative values in a column ie
pos_values = [x for x in df.prediction_at_ohlcv_end_date if x > 0]
neg_values = [x for x in df.prediction_at_ohlcv_end_date if x < 0]
Here's a data sample
market_trading_pair next_future_timestep_return ohlcv_start_date prediction_at_ohlcv_end_date
0 Poloniex_ETH_BTC 0.003013 1450753200 -0.157053
1 Poloniex_ETH_BTC -0.006521 1450756800 -0.920074
2 Poloniex_ETH_BTC 0.003171 1450760400 0.999806
3 Poloniex_ETH_BTC -0.003083 1450764000 0.627140
4 Poloniex_ETH_BTC -0.001382 1450767600 0.999857
What's a nice way to do this in pandas ?
EDIT:
I have been able to do this thanks to some helpful stackers, I realised I can't a futher calculation however. `
if prediction_at_ohlcv_end_date > 0 :
return = prediction_at_ohlcv_end_date * next_future_timestep_return.
For each element in the frame, Any ideas?`
Upvotes: 1
Views: 9576
Reputation: 31672
You could use method sum
of pandas.Series
for your particular column:
neg = df.prediction_at_ohlcv_end_date[df.prediction_at_ohlcv_end_date < 0].sum()
pos = df.prediction_at_ohlcv_end_date[df.prediction_at_ohlcv_end_date >= 0].sum()
In [51]: pos
Out[51]: 2.6268029999999998
In [52]: neg
Out[52]: -1.077127
For your values:
pos_values = df.prediction_at_ohlcv_end_date[df.prediction_at_ohlcv_end_date >= 0]
neg_values = df.prediction_at_ohlcv_end_date[df.prediction_at_ohlcv_end_date < 0]
EDIT
For your edit you could do:
mask = df.prediction_at_ohlcv_end_date >= 0
res = df.prediction_at_ohlcv_end_date[mask] * df.next_future_timestep_return[mask]
In [10]: res
Out[10]:
2 0.003170
3 -0.001933
4 -0.001382
dtype: float64
Upvotes: 3