Reputation: 189
So i was given this question. Consider the Stack and the Queue class with standard set of operations. Using the Stack and Queue class, what items are contained in them just before the mysteryFunction is called AND just after the mysteryFunction is called?
Here is the code:
def mysteryFunction(s, q):
q.enqueue('csc148')
q.enqueue(True)
q.enqueue(q.front())
q.enqueue('abstract data type')
for i in range(q.size()):
s.push(q.dequeue())
while not s.is_empty():
q.enqueue(s.pop())
if __name__ == '__main__':
s=Stack()
q=Queue()
#About to call mysteryFunction
#What are contents of s and q at this point?
mysteryFunction(s, q)
#mysteryFunction has been called.
#What are contents of s and q at this point?
I'm having trouble understanding object oriented programming as i'm new to this topic. Is there any link that breaks down Stacks and Queues and what they do?
Upvotes: 19
Views: 18826
Reputation: 1
class stack:
def __init__(self,n): #constructor
self.no = n # size of stack
self.Stack = [] # list for store stack items
self.top = -1
def push(self): # push method
if self.top == self.no - 1: # check full condition
print("Stack Overflow.....")
else:
n = int(input("enter an element :: "))
self.Stack.append(n) # in list add stack items use of append method
self.top += 1. # increment top by 1
def pop(self): # pop method
if self.top == -1: # check empty condition
print("Stack Underflow....")
else:
self.Stack.pop(). # delete item from top of stack using pop method
self.top -= 1 # decrement top by 1
def peep(self): #peep method
print(self.top,"\t",self.Stack[-1]) #display top item
def disp (self): # display method
if self.top == -1: # check empty condition
print("Stack Underflow....")
else:
print("TOP \tELEMENT")
for i in range(self.top,-1,-1): # print items and top
print(i," \t",self.Stack[i])
n = int(input("Enter Size :: ")) # size of stack
stk = stack(n) # object and pass n as size
while(True): # loop for choice as a switch case
print(" 1: PUSH ")
print(" 2: POP ")
print(" 3: PEEP ")
print(" 4: PRINT ")
print(" 5: EXIT ")
option = int(input("enter your choice :: "))
if option == 1:
stk.push()
elif option == 2:
stk.pop()
elif option == 3:
stk.peep()
elif option == 4:
stk.disp()
elif option == 5:
print("you are exit!!!!!")
break
else:
print("Incorrect option")
Upvotes: 0
Reputation: 27
The first code explains about the stack , we need to create a list and while pushing the element use append and fill the list , similar to what we have in array stack. While pop , pop out the end from where you pushed it.
class Stack:
def __init__(self):
self.stack = []
def push_element(self,dataval):
self.stack.append(dataval)
return self.stack
def pop_element(self):
if len(self.stack) ==0:
print("Stack is empty")
else:
self.stack.pop()
return self.stack
def peek_element(self):
return self.stack[0]
class Queue:
def __init__(self):
self.stack = []
def push_ele(self,data):
self.stack.append(data)
def pop_ele(self):
self.stack.pop(0)
def display(self):
print(self.stack)
Upvotes: 0
Reputation:
STACK #LIFO
class stack(object):
def __init__(self):
self.items = []
def isEmpty(self):
return self.items==[]
def push(self,item):
self.items.append(item)
def pop (self):
return self.items.pop()
def peek(self):
return self.items[len(self.items) - 1]
def size(self):
return (len(self.items))
s = stack()
print (s.isEmpty())
>> True
s.push(1)
s.push('3')
s.peek()
>>'3'
s.size()
>> 2
Queue #FIFO
class Queue(object):
def __init__(self):
self.items = []
def isEmpty(self):
return self.items==[]
def enqueue(self,item):
self.items.insert(0,item)
def dequeue(self):
return self.items.pop()
def size(self):
return (len(self.items))
q = Queue()
q.isEmpty()
>>True
q.enqueue(1)
q.enqueue(2)
q.dequeue()
>>1
Upvotes: 0
Reputation: 2167
See following links for more information:
Visually these two data structures can be seen in a following way:
Stack:
Description:
There are variations of this data structure. However, in simple terms - as one can observe in the image provided, when you add to this data structure you place on top of what is already there and when you remove you also take from the top. You can view it as a stack of books which you go through one by one starting from the top and all the way down.
Queue
Description:
There are also variations on this particular data structure, however in simple terms - as you can see in the image provided, when you add to this data structure the new element goes in the begining and when you remove its the last element from the list which is being removed. You can imagine it as a queue you got in a shop where you stand behind a lot of people waiting for your turn to come to the counter to pay for your items.
Upvotes: 6
Reputation: 27283
To test this line by line, here are implementations of the classes (wrappers around deque) that are used in the task:
from collections import deque
class Queue(deque):
enqueue = deque.append
dequeue = deque.popleft
def front(self):
return self[-1]
def size(self):
return len(self)
class Stack(deque):
push = deque.append
def is_empty(self):
return not self
Upvotes: 3
Reputation: 226316
In general, stacks are LIFO and queues are FIFO.
In Python, you can use the collections module to experiment with stacks and queues:
>>> from collections import deque
>>> stack = deque()
>>> stack.append(10)
>>> stack.append(20)
>>> stack.append(30)
>>> stack
deque([10, 20, 30])
>>> stack.pop() # LIFO
30
>>> stack.pop()
20
>>>
>>> queue = deque()
>>> queue.append(10)
>>> queue.append(20)
>>> queue.append(30)
>>> queue
deque([10, 20, 30])
>>> queue.popleft() # FIFO
10
>>> queue.popleft()
20
Upvotes: 30