Reputation: 639
I'm trying to calculate the confidence intervals for fixed effects in an lmer mixed model, and difflsmeans and lsmeans simply return an empty table. I've tried lme() but am having trouble with model convergence (hence using lmer).
The data look like this (where bout is the dependent level 1 variable and TWaverage is the independent level 2 variable of interest and sex, location and RA are further nesting levels):
ID bout TWaverage sex location RA
1 17 3.748333333 1 Big Society 1337
1 59 3.748333333 1 Big Society 1337
1 14 3.748333333 1 Big Society 1337
1 9 3.748333333 1 Big Society 1337
1 9 3.748333333 1 Big Society 1337
1 14 3.748333333 1 Big Society 1337
1 21 3.748333333 1 Big Society 1337
2 40 3.055833333 0 Big Society 1337
2 63 3.055833333 0 Big Society 1337
2 7 3.055833333 0 Big Society 1337
2 75 3.055833333 0 Big Society 1337
2 13 3.055833333 0 Big Society 1337
2 3 3.055833333 0 Big Society 1337
2 16 3.055833333 0 Big Society 1337
3 103 3.696666667 1 Big Society 1337
3 14 3.696666667 1 Big Society 1337
3 2 3.696666667 1 Big Society 1337
3 32 3.696666667 1 Big Society 1337
My model specification looks like this:
groupSizeRandom = lmer(bout ~ TWaverage + (TWaverage|ID), data, REML = F)
I'm calling the lsmeans like this (which I understand should give me the confidence intervals for all fixed effects in the model):
lsmeans(groupSizeRandom,test.effs = NULL)
However, it only returns an empty table (with no values):
Least Squares Means table:
Estimate Standard Error DF t-value Lower CI Upper CI p-value
Anyone know why? Or how to calculate the CIs for the model I've specified above?
Upvotes: 3
Views: 1911
Reputation: 226182
There are a few issues here.
confint(groupSizeRandom)
or Wald CIs via confint(groupSizeRandom,method="Wald")
(see ?confint.merMod
).lsmeans
functions
lmerTest::lsmeans
will only report lsmeans for factor
variables. As also pointed out in the comments, "factor" has a specific meaning in R - it means a categorical predictor (independent) variable. TWaverage
is a continuous predictor, so in R terms it's not a "factor".lsmeans::lsmeans
will give you what you ask for if you use lsmeans(groupSizeRandom,spec="TWaverage")
...Upvotes: 2