Reputation: 3723
Given the following data frame:
import pandas as pd
df = pd.DataFrame({'COL1': ['A', 'A','A','A','B','B'],
'COL2' : ['AA','AA','BB','BB','BB','BB'],
'COL3' : [2,3,4,5,4,2],
'COL4' : [0,1,2,3,4,2]})
df
COL1 COL2 COL3 COL4
0 A AA 2 0
1 A AA 3 1
2 A BB 4 2
3 A BB 5 3
4 B BB 4 4
5 B BB 2 2
I would like, as efficiently as possible (i.e. via groupby and lambda x or better), to find the median of columns 3 and 4 for each distinct group of columns 1 and 2.
The desired result is as follows:
COL1 COL2 COL3 COL4 MEDIAN
0 A AA 2 0 1.5
1 A AA 3 1 1.5
2 A BB 4 2 3.5
3 A BB 5 3 3.5
4 B BB 4 4 3
5 B BB 2 2 3
Thanks in advance!
Upvotes: 5
Views: 17790
Reputation: 6383
You already had the idea -- groupby COL1 and COL2 and calculate median.
m = df.groupby(['COL1', 'COL2'])[['COL3','COL4']].apply(np.median)
m.name = 'MEDIAN'
print df.join(m, on=['COL1', 'COL2'])
COL1 COL2 COL3 COL4 MEDIAN
0 A AA 2 0 1.5
1 A AA 3 1 1.5
2 A BB 4 2 3.5
3 A BB 5 3 3.5
4 B BB 4 4 3.0
5 B BB 2 2 3.0
Upvotes: 10