Reputation: 179
Recently I got stuck in a problem. The part of algorithm requires to compute sum of maximum element of sliding windows of length K. Where K ranges from 1<=K<=N (N length of an array).
Example if I have an array A as 5,3,12,4
Sliding window of length 1: 5 + 3 + 12 + 4 = 24
Sliding window of length 2: 5 + 12 + 12 = 29
Sliding window of length 3: 12 + 12 = 24
Sliding window of length 4: 12
Final answer is 24,29,24,12
.
I have tried to this O(N^2). For each sliding window of length K, I can calculate the maximum in O(N). Since K is upto N. Therefore, overall complexity turns out to be O(N^2).
I am looking for O(N) or O(NlogN) or something similar to this algorithm as N maybe upto 10^5.
Note: Elements in array can be as large as 10^9 so output the final answer as modulo 10^9+7
EDIT: What I actually want to find answer for each and every value of K (i.e. from 0 to N) in overall linear time or in O(NlogN) not in O(KN) or O(KNlogN) where K={1,2,3,.... N}
Upvotes: 6
Views: 2237
Reputation: 65498
Here's an abbreviated sketch of O(n).
For each element, determine how many contiguous elements to the left are no greater (call this a
), and how many contiguous elements to the right are lesser (call this b
). This can be done for all elements in time O(n) -- see MBo's answer.
A particular element is maximum in its window if the window contains the element and only elements among to a
to its left and the b
to its right. Usefully, the number of such windows of length k (and hence the total contribution of these windows) is piecewise linear in k, with at most five pieces. For example, if a = 5
and b = 3
, there are
1 window of size 1
2 windows of size 2
3 windows of size 3
4 windows of size 4
4 windows of size 5
4 windows of size 6
3 windows of size 7
2 windows of size 8
1 window of size 9.
The data structure that we need to encode this contribution efficiently is a Fenwick tree whose values are not numbers but linear functions of k. For each linear piece of the piecewise linear contribution function, we add it to the cell at beginning of its interval and subtract it from the cell at the end (closed beginning, open end). At the end, we retrieve all of the prefix sums and evaluate them at their index k to get the final array.
(OK, have to run for now, but we don't actually need a Fenwick tree for step two, which drops the complexity to O(n) for that, and there may be a way to do step one in linear time as well.)
Python 3, lightly tested:
def left_extents(lst):
result = []
stack = [-1]
for i in range(len(lst)):
while stack[-1] >= 0 and lst[i] >= lst[stack[-1]]:
del stack[-1]
result.append(stack[-1] + 1)
stack.append(i)
return result
def right_extents(lst):
result = []
stack = [len(lst)]
for i in range(len(lst) - 1, -1, -1):
while stack[-1] < len(lst) and lst[i] > lst[stack[-1]]:
del stack[-1]
result.append(stack[-1])
stack.append(i)
result.reverse()
return result
def sliding_window_totals(lst):
delta_constant = [0] * (len(lst) + 2)
delta_linear = [0] * (len(lst) + 2)
for l, i, r in zip(left_extents(lst), range(len(lst)), right_extents(lst)):
a = i - l
b = r - (i + 1)
if a > b:
a, b = b, a
delta_linear[1] += lst[i]
delta_linear[a + 1] -= lst[i]
delta_constant[a + 1] += lst[i] * (a + 1)
delta_constant[b + 2] += lst[i] * (b + 1)
delta_linear[b + 2] -= lst[i]
delta_linear[a + b + 2] += lst[i]
delta_constant[a + b + 2] -= lst[i] * (a + 1)
delta_constant[a + b + 2] -= lst[i] * (b + 1)
result = []
constant = 0
linear = 0
for j in range(1, len(lst) + 1):
constant += delta_constant[j]
linear += delta_linear[j]
result.append(constant + linear * j)
return result
print(sliding_window_totals([5, 3, 12, 4]))
Upvotes: 4
Reputation: 80267
Let's determine for every element an interval, where this element is dominating (maximum). We can do this in linear time with forward and backward runs using stack. Arrays L and R will contain indexes out of the domination interval.
To get right and left indexes:
Stack.Push(0) //(1st element index)
for i = 1 to Len - 1 do
while Stack.Peek < X[i] do
j = Stack.Pop
R[j] = i //j-th position is dominated by i-th one from the right
Stack.Push(i)
while not Stack.Empty
R[Stack.Pop] = Len //the rest of elements are not dominated from the right
//now right to left
Stack.Push(Len - 1) //(last element index)
for i = Len - 2 to 0 do
while Stack.Peek < X[i] do
j = Stack.Pop
L[j] = i //j-th position is dominated by i-th one from the left
Stack.Push(i)
while not Stack.Empty
L[Stack.Pop] = -1 //the rest of elements are not dominated from the left
Result for (5,7,3,9,4) array.
For example, 7 dominates at 0..2 interval, 9 at 0..4
i 0 1 2 3 4
X 5 7 3 9 4
R 1 3 3 5 5
L -1 -1 1 -1 4
Now for every element we can count it's impact in every possible sum.
Element 5 dominates at (0,0) interval, it is summed only in k=1 sum entry
Element 7 dominates at (0,2) interval, it is summed once in k=1 sum entry, twice in k=2 entry, once in k=3 entry.
Element 3 dominates at (2,2) interval, it is summed only in k=1 sum entry
Element 9 dominates at (0,4) interval, it is summed once in k=1 sum entry, twice in k=2, twice in k=3, twice in k=4, once in k=5.
Element 4 dominates at (4,4) interval, it is summed only in k=1 sum entry.
In general element with long domination interval in the center of long array may give up to k*Value impact in k-length sum (it depends on position relative to array ends and to another dom. elements)
k 1 2 3 4 5
--------------------------
5
7 2*7 7
3
9 2*9 2*9 2*9 9
4
--------------------------
S(k) 28 32 25 18 9
Note that the sum of coefficients is N*(N-1)/2 (equal to the number of possible windows), the most of table entries are empty, so complexity seems better than O(N^2)
(I still doubt about exact complexity)
Upvotes: 2
Reputation: 881
The sum of maximum in sliding windows for a given window size can be computed in linear time using a double ended queue that keeps elements from the current window. We maintain the deque such that the first (index 0, left most) element in the queue is always the maximum of the current window.
This is done by iterating over the array and in each iteration, first we remove the first element in the deque if it is no longer in the current window (we do that by checking its original position, which is also saved in the deque together with its value). Then, we remove any elements from the end of the deque that are smaller than the current element, and finally we add the current element to the end of the deque.
The complexity is O(N) for computing the maximum for all sliding windows of size K. If you want to do that for all values of K from 1..N, then time complexity will be O(N^2). O(N) is the best possible time to compute the sum of maximum values of all windows of size K (that is easy to see). To compute the sum for other values of K, the simple approach is to repeat the computation for each different value of K, which would lead to overall time of O(N^2). Is there a better way ? No, because even if we save the result from a computation for one value of K, we would not be able to use it to compute the result for a different value of K, in less then O(N) time. So best time is O(N^2).
The following is an implementation in python:
from collections import deque
def slide_win(l, k):
dq=deque()
for i in range(len(l)):
if len(dq)>0 and dq[0][1]<=i-k:
dq.popleft()
while len(dq)>0 and l[i]>=dq[-1][0]:
dq.pop()
dq.append((l[i],i))
if i>=k-1:
yield dq[0][0]
def main():
l=[5,3,12,4]
print("l="+str(l))
for k in range(1, len(l)+1):
s=0
for x in slide_win(l,k):
s+=x
print("k="+str(k)+" Sum="+str(s))
Upvotes: 0