Reputation: 1443
What is the difference between Scikit-learn's sklearn.metrics.pairwise.cosine_similarity and sklearn.metrics.pairwise.pairwise_distances(.. metric="cosine")?
from sklearn.feature_extraction.text import TfidfVectorizer
documents = (
"Macbook Pro 15' Silver Gray with Nvidia GPU",
"Macbook GPU"
)
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)
from sklearn.metrics.pairwise import cosine_similarity
print(cosine_similarity(tfidf_matrix[0:1], tfidf_matrix)[0,1])
0.37997836
from sklearn.metrics.pairwise import pairwise_distances
print(pairwise_distances(tfidf_matrix[0:1], tfidf_matrix, metric='cosine')[0,1])
0.62002164
Why are these different?
Upvotes: 11
Views: 13425
Reputation: 359
pairwise distance provide distance between two array.so more pairwise distance means less similarity.while cosine similarity is 1-pairwise_distance so more cosine similarity means more similarity between two arrays.
Upvotes: 1
Reputation: 4172
From source code documentation:
Cosine distance is defined as 1.0 minus the cosine similarity.
So your result make sense.
Upvotes: 27