Reputation: 21
I am running Lasagne and Theano to create my Convolutional Neural Network. I currently consist of
l_shape = lasagne.layers.ReshapeLayer(l_in, (-1, 3,130, 130))
l_conv1 = lasagne.layers.Conv2DLayer(l_shape, num_filters=32, filter_size=3, pad=1)
l_conv1_1 = lasagne.layers.Conv2DLayer(l_conv1, num_filters=32, filter_size=3, pad=1)
l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1_1, 2)
l_conv2 = lasagne.layers.Conv2DLayer(l_pool1, num_filters=64, filter_size=3, pad=1)
l_conv2_2 = lasagne.layers.Conv2DLayer(l_conv2, num_filters=64, filter_size=3, pad=1)
l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2_2, 2)
l_conv3 = lasagne.layers.Conv2DLayer(l_pool2, num_filters=64, filter_size=3, pad=1)
l_conv3_2 = lasagne.layers.Conv2DLayer(l_conv3, num_filters=64, filter_size=3, pad=1)
l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3_2, 2)
l_conv4 = lasagne.layers.Conv2DLayer(l_pool3, num_filters=64, filter_size=3, pad=1)
l_conv4_2 = lasagne.layers.Conv2DLayer(l_conv4, num_filters=64, filter_size=3, pad=1)
l_pool4 = lasagne.layers.MaxPool2DLayer(l_conv4_2, 2)
l_conv5 = lasagne.layers.Conv2DLayer(l_pool4, num_filters=64, filter_size=3, pad=1)
l_conv5_2 = lasagne.layers.Conv2DLayer(l_conv5, num_filters=64, filter_size=3, pad=1)
l_pool5 = lasagne.layers.MaxPool2DLayer(l_conv5_2, 2)
l_out = lasagne.layers.DenseLayer(l_pool5, num_units=2, nonlinearity=lasagne.nonlinearities.softmax)
My last layer is a denselayer which uses a softmax to output my classification. My ultimate goal is to retrieve the probability and not the classification (0 or 1).
When I call get_all_param_values(), it provides me an extensive array. I only want the weights and bias for the last dense layer. How do you go about this? I have tried l_out.W and l_out.b and get_values().
Thanks in advance!
Upvotes: 2
Views: 1572
Reputation: 601
I modified your code because what you pasted references an l_in, but you don't include an l_in in your code. I defined the following network:
l_shape = lasagne.layers.InputLayer(shape = (None, 3, 130, 130))
l_conv1 = lasagne.layers.Conv2DLayer(l_shape, num_filters=32, filter_size=3, pad=1)
l_conv1_1 = lasagne.layers.Conv2DLayer(l_conv1, num_filters=32, filter_size=3, pad=1)
l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1_1, 2)
l_conv2 = lasagne.layers.Conv2DLayer(l_pool1, num_filters=64, filter_size=3, pad=1)
l_conv2_2 = lasagne.layers.Conv2DLayer(l_conv2, num_filters=64, filter_size=3, pad=1)
l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2_2, 2)
l_conv3 = lasagne.layers.Conv2DLayer(l_pool2, num_filters=64, filter_size=3, pad=1)
l_conv3_2 = lasagne.layers.Conv2DLayer(l_conv3, num_filters=64, filter_size=3, pad=1)
l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3_2, 2)
l_conv4 = lasagne.layers.Conv2DLayer(l_pool3, num_filters=64, filter_size=3, pad=1)
l_conv4_2 = lasagne.layers.Conv2DLayer(l_conv4, num_filters=64, filter_size=3, pad=1)
l_pool4 = lasagne.layers.MaxPool2DLayer(l_conv4_2, 2)
l_conv5 = lasagne.layers.Conv2DLayer(l_pool4, num_filters=64, filter_size=3, pad=1)
l_conv5_2 = lasagne.layers.Conv2DLayer(l_conv5, num_filters=64, filter_size=3, pad=1)
l_pool5 = lasagne.layers.MaxPool2DLayer(l_conv5_2, 2)
l_out = lasagne.layers.DenseLayer(l_pool5, num_units=2, nonlinearity=lasagne.nonlinearities.softmax)
Just to implement Daniel Renshaw's answer:
params = l_out.get_params()
W = params[0].get_value()
When you print params, you will see all the parameters for l_out:
[W, b]
So each element of params, params[0] and params[1] is a Theano shared variable and you can get the numerical values by params[i].get_value().
Upvotes: 1
Reputation: 34187
You can get the parameters for a single layer using get_params
. This is explained in the documentation.
Upvotes: 1